| N.& P.<br>000000 | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |

#### Hilbert functions of Veronesean subvarieties and Complete Intersections

Stefano Canino J. w. with Enrico Carlini

Uniwersytet Warszawski

June 24<sup>th</sup> 2025 Université Côte d'Azur, Nice

| N.& P. | H. Fun. 0 | C.I. |
|--------|-----------|------|
| ●00000 | 000000000 | 0000 |
|        |           |      |

### A long-standing (and solved) problem

Problem (G. Cramer, L. Euler, 1744)

Let X a set of points in the plane. When is X the intersection of two curves?

Theorem (L. Euler, 1744)

If a set  $X \subset \mathbb{P}^2$  of 9 points is the intersection of two cubics, then every cubic passing through 8 of the 9 passes through all 9.

The viceversa is true, provided that the 9 points do not lie on a conic.

Theorem (E. Davis, P. Maroscia, 1984)

Let  $X \subset \mathbb{P}^2$  a set of  $\ell$  points and set  $\alpha := \min\{t \in \mathbb{N} \mid h^0(\mathcal{I}_X(t)) \neq 0\}$ . Then, X is a complete intersection if and only if  $\alpha^{-1}\ell \in \mathbb{N}$  and  $H^0(\mathcal{I}_X(t)) = H^0(\mathcal{I}_Y(t))$  for any  $Y \subset X$  with  $\ell(Y) = \ell - 1$  and any  $t \leq \alpha^{-1}\ell + \alpha - 3$ .

| N.& P.<br>●00000 | H. Fun. 000000000 | C.I.<br>0000 |
|------------------|-------------------|--------------|
|                  |                   |              |

### A long-standing (and solved) problem

Problem (G. Cramer, L. Euler, 1744)

Let X a set of points in the plane. When is X the intersection of two curves?

Theorem (L. Euler, 1744)

If a set  $X \subset \mathbb{P}^2$  of 9 points is the intersection of two cubics, then every cubic passing through 8 of the 9 passes through all 9.

The viceversa is true, provided that the 9 points do not lie on a conic.

Theorem (E. Davis, P. Maroscia, 1984)

Let  $X \subset \mathbb{P}^2$  a set of  $\ell$  points and set  $\alpha := \min\{t \in \mathbb{N} \mid h^0(\mathcal{I}_X(t)) \neq 0\}$ . Then, X is a complete intersection if and only if  $\alpha^{-1}\ell \in \mathbb{N}$  and  $H^0(\mathcal{I}_X(t)) = H^0(\mathcal{I}_Y(t))$  for any  $Y \subset X$  with  $\ell(Y) = \ell - 1$  and any  $t \leq \alpha^{-1}\ell + \alpha - 3$ .

What about complete intersection on Veronese surfaces? We classify them using Hilbert functions.

# Basic ingredients

- $\mathbb{K}$  is an algebraic closed field,  $\operatorname{char}(\mathbb{K}) = 0$ .
- Our varieties will always be reduced.
- $R = \mathbb{K}[x_0, \dots, x_n]$  is the coordinate ring of  $\mathbb{P}^n$ .
- If d is a positive integer, we set  $N = \binom{n+d}{d} 1$  and we denote the coordinate ring of  $\mathbb{P}^N$  by  $S = \mathbb{K}[y_0, \ldots, y_N]$ .
- $H_{\mathbb{X}}(t) := \dim_{\mathbb{K}}(R/\mathcal{I}(\mathbb{X}))_t$  is the Hilbert function of a projective variety  $\mathbb{X}$  and  $\Delta H_{\mathbb{X}}(t) = H_{\mathbb{X}}(t) H_{\mathbb{X}}(t-1)$  is its first difference function.
- for each  $n, d \in \mathbb{N}_{>0}$  we denote by  $\nu_{n,d} : \mathbb{P}^n \to \mathbb{P}^N$  the (n, d)-Veronese embedding and by  $V_{n,d} \coloneqq \nu_{n,d}(\mathbb{P}^n)$ .

| N.& P.<br>00●000 | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |

#### Hilbert functions of Veronese subvarieties

Using the graded morphism

$$\begin{array}{rrrr} \varphi_d: & S & \to & R \\ & a & \mapsto & a \\ & y_i & \mapsto & \underline{x}^{\alpha_i} \end{array}$$

for all  $a \in \mathbb{K}$ , and for  $i \in \{0, \ldots, N\}$ , it is easy to see that:

• if 
$$\mathbb{X} \subseteq V_{n,d}$$
, then  $(\mathcal{I}(\nu_{n,d}^{-1}(\mathbb{X})))_{td} = \varphi_d(\mathcal{I}(\mathbb{X})_t)$ .

**9** if X is a subvariety of  $V_{n,d}$  and we set  $\mathbb{Y} = \nu_{n,d}^{-1}(\mathbb{X})$ , then

 $H_{\mathbb{X}}(t) = H_{\mathbb{Y}}(td) \ \forall \ t \ge 0.$ 

| N.& P.<br>00●000 | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |
|                  |                      |  |

#### Hilbert functions of Veronese subvarieties

Using the graded morphism

$$\begin{array}{rrrrr} \varphi_d: & S & \to & R \\ & a & \mapsto & a \\ & y_i & \mapsto & \underline{x}^{\alpha_i} \end{array}$$

for all  $a \in \mathbb{K}$ , and for  $i \in \{0, \ldots, N\}$ , it is easy to see that:

• if 
$$\mathbb{X} \subseteq V_{n,d}$$
, then  $(\mathcal{I}(\nu_{n,d}^{-1}(\mathbb{X})))_{td} = \varphi_d(\mathcal{I}(\mathbb{X})_t)$ .

$$\boldsymbol{O}$$
 if  $\mathbb{X}$  is a subvariety of  $V_{n,d}$  and we set  $\mathbb{Y} = \nu_{n,d}^{-1}(\mathbb{X})$ , then

$$H_{\mathbb{X}}(t) = H_{\mathbb{Y}}(td) \ \forall \ t \ge 0.$$

Theorem (-, E. Carlini '23)

Let  $h(t) : \mathbb{N} \to \mathbb{N}$  be the Hilbert function of a projective variety  $\mathbb{X} \subseteq \mathbb{P}^N$ . Then there exists  $\mathbb{X}' \subseteq V_{n,d} \subseteq \mathbb{P}^N$  such that  $H_{\mathbb{X}'}(t) = h(t)$  if and only there exists  $k(t) : \mathbb{N} \to \mathbb{N}$  Hilbert function of a projective variety in  $\mathbb{P}^n$  such that h(t) = k(dt).

| N.& P.<br>000●00 | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |
|                  |                      |  |
|                  |                      |  |

#### 0-sequences

If h and i are positive integers, then h can be written uniquely in the form

$$h = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_j}{j}$$

where  $n_i > n_{i-1} > \cdots > n_j \ge j \ge 1$ . We set

$$h^{\langle i \rangle} = {n_i + 1 \choose i + 1} + {n_{i-1} + 1 \choose i} + \dots + {n_j + 1 \choose j + 1}$$

|             | N.& P.      | H. Fun.   | C.I. |
|-------------|-------------|-----------|------|
|             | 000●00      | 000000000 | 0000 |
| 0-sequences | 0-sequences |           |      |

If h and i are positive integers, then h can be written uniquely in the form

$$h = \binom{n_i}{i} + \binom{n_{i-1}}{i-1} + \dots + \binom{n_j}{j}$$

where  $n_i > n_{i-1} > \cdots > n_j \ge j \ge 1$ . We set

$$h^{\langle i \rangle} = {\binom{n_i+1}{i+1}} + {\binom{n_{i-1}+1}{i}} + \dots + {\binom{n_j+1}{j+1}}$$

#### Definition

A sequence of non-negative integers  $(c_t)_{t\in\mathbb{N}}$  is called a 0-sequence if  $c_0 = 1$  and  $c_{t+1} \leq c^{\langle t \rangle}$  for all  $t \geq 1$ .

Theorem (Macaulay '27, Stanley, '78)

The following two are equivalent (for  $\mathbb{K}$  any field):

- $(c_t)_{t\in\mathbb{N}}$  is the Hilbert function of a standard algebra  $\mathbb{K}[x_0,\ldots,x_n]/I$ .
- $(c_t)_{t\in\mathbb{N}}$  is a 0-sequence.

| N & P.<br>0000€0 | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |
|                  |                      |  |

#### Differentiable 0-sequences

If  $I \subseteq \mathbb{K}[x_0, \dots, x_n]$  is a radical ideal, there exists a linear form  $L \in \mathbb{K}[x_0, \dots, x_n]_1$  such that the following sequence

$$0 \longrightarrow R/I(-1) \xrightarrow{L} R/I \xrightarrow{\pi} R/I+(L) \longrightarrow 0$$

is exact and hence

$$\Delta H_I(t) = H_{I+(L)}(t)$$

#### Definition

A 0-sequence  $(b_t)_{t\in\mathbb{N}}$  is called *differentiable* if the difference sequence  $(c_t)_{t\in\mathbb{N}}$ ,  $c_t = b_t - b_{t-1}$  is again a 0-sequence (where  $b_{-1} = 0$ ).

| N.& P.<br>0000€0 | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |
|                  |                      |  |

### Differentiable 0-sequences

If  $I \subseteq \mathbb{K}[x_0, \dots, x_n]$  is a radical ideal, there exists a linear form  $L \in \mathbb{K}[x_0, \dots, x_n]_1$  such that the following sequence

$$0 \longrightarrow R/I(-1) \xrightarrow{L} R/I \xrightarrow{\pi} R/I+(L) \longrightarrow 0$$

is exact and hence

$$\Delta H_I(t) = H_{I+(L)}(t)$$

#### Definition

A 0-sequence  $(b_t)_{t\in\mathbb{N}}$  is called *differentiable* if the difference sequence  $(c_t)_{t\in\mathbb{N}}$ ,  $c_t = b_t - b_{t-1}$  is again a 0-sequence (where  $b_{-1} = 0$ ).

#### Theorem (A.V. Geramita, P. Maroscia, L. Robert, '83)

Let  $\mathbbm{K}$  be an infinite field. The following two are equivalent:

- $(b_t)_{t\in\mathbb{N}}$  is the Hilbert function of  $\mathbb{K}[x_0,\ldots,x_n]/I$ , with  $I=\sqrt{I}$ .
- $(b_t)_{t\in\mathbb{N}}$  is a differentiable 0-sequence.

| N.& P.<br>00000● | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |

### From 0-sequences to d-sequences

Definition (-, E. Carlini '23)

- A 0-sequence  $(b_t)_{t\in\mathbb{N}}$  is called *d*-sequence if there exists a 0-sequence  $(c_t)_{t\in\mathbb{N}}$  such that  $b_t = c_{(d+1)t}$ .
- A 0-sequence  $(b_t)_{t\in\mathbb{N}}$  is called *differentiable d-sequence* if there exists a differentiable 0-sequence  $(c_t)_{t\in\mathbb{N}}$  such that  $b_t = c_{(d+1)t}$ .

| N.& P.<br>00000● | H. Fun.<br>000000000 |  |
|------------------|----------------------|--|
|                  |                      |  |

### From 0-sequences to d-sequences

Definition (-, E. Carlini '23)

- A 0-sequence  $(b_t)_{t\in\mathbb{N}}$  is called *d*-sequence if there exists a 0-sequence  $(c_t)_{t\in\mathbb{N}}$  such that  $b_t = c_{(d+1)t}$ .
- A 0-sequence  $(b_t)_{t\in\mathbb{N}}$  is called *differentiable d-sequence* if there exists a differentiable 0-sequence  $(c_t)_{t\in\mathbb{N}}$  such that  $b_t = c_{(d+1)t}$ .

We can now rephrase our theorem as follows.

Theorem (-, E. Carlini '23)

Let  $(h_t)_{t\in\mathbb{N}}$  be a sequence of non-negative integers such that  $h_0 = 1$  and  $h_1 = N + 1$ . There exists a projective variety  $\mathbb{X} \subseteq V_{n,d} \subseteq \mathbb{P}^N$  such that  $H_{\mathbb{X}}(t) = h_t$  if and only if  $(h_t)_{t\in\mathbb{N}}$  is a differentiable (d-1)-sequence.

| N.& P.<br>000000 | H. Fun.<br>●00000000 |  |
|------------------|----------------------|--|
|                  |                      |  |

## Castelnuovo functions

Proposition (P. Dubreil '33)

Let  $\mathbb{X} \subseteq \mathbb{P}^2$  be a 0-dimensional scheme and let  $\alpha_{\mathbb{X}} := \min\{t \in \mathbb{N} \mid (\mathcal{I}(\mathbb{X})_t \neq 0)\}$ . Then there exists  $\sigma_{\mathbb{X}} \in \mathbb{N}$ ,  $\sigma_{\mathbb{X}} \geq \alpha_{\mathbb{X}} - 2$  such that:

- $\Theta \Delta H_{\mathbb{X}}(t) = t + 1$  if and only if  $t = 0, \ldots, \alpha_{\mathbb{X}} 1$ .
- $\Delta H_{\mathbb{X}}(\sigma_{\mathbb{X}}+1) > 0.$

 $\Delta H_{\mathbb{X}}(t)$  is the Castelnuovo function of X.

| N.& P.           | H. Fun.   | C.I. |
|------------------|-----------|------|
| 000000           | 0●0000000 | 0000 |
| Castelnuovo sets |           |      |

#### Definition/Theorem (B. Kreuzer, M. Kreuzer, '98)

Let  $h : \mathbb{Z} \to \mathbb{N}$  be a Castelnuovo function with invariants  $\alpha_h$  and  $\sigma_h$ , and let  $\{s_0, \ldots, s_{\sigma_h+1}\} \subseteq \mathbb{K}, \{t_0, \ldots, t_{\alpha_h-1}\} \subseteq \mathbb{K}$  be sets of pairwise distinct elements. The reduced 0-dimensional subscheme

 $\mathbb{X}(h):=\{(1:s_i:t_j)\in\mathbb{P}^2\mid 0\leq i+j\leq\sigma_h+1, 0\leq j\leq h_{i+j}\}$ 

is called *Castelnuovo set* for h with parameters  $s_0, \ldots, s_{\sigma_h+1}$  and  $t_0, \ldots, t_{\alpha_h} - 1$ . Moreover  $\Delta H_{\mathbb{X}}(t) = h(t)$ .

An example:



| N.& P.<br>000000 | H. Fun.<br>00●000000 |  |
|------------------|----------------------|--|
|                  |                      |  |
|                  |                      |  |
|                  |                      |  |

#### The idea in case n = 2

Let us suppose to have h(t), the Hilbert function of 128 points in  $\mathbb{P}^{20}$  defined by the following table:

| t    | 0 | 1  | <b>2</b> | 3   | 4   | 5   | 6   |
|------|---|----|----------|-----|-----|-----|-----|
| h(t) | 1 | 21 | 62       | 100 | 122 | 128 | 128 |

and we want to construct a  $k(t) : \mathbb{Z} \to \mathbb{Z}$  such that h(t) = k(dt), i.e. we want to understand if  $\exists \mathbb{X} \subseteq V_{2,5} \subseteq \mathbb{P}^{20}$  such that  $H_{\mathbb{X}}(t) = h(t)$ . Since

$$k_t = \sum_{i=0}^t \Delta k_i$$

we can construct  $\Delta k_t$  instead of  $k_t$ . Moreover, the condition h(t) = k(dt) imposes that

$$\Delta h_{t+1} = \sum_{i=1}^{d} \Delta k_{dt+i}.$$

We have:

| N.& P.<br>000000 | H. Fun.<br>000€00000 |  |
|------------------|----------------------|--|
|                  |                      |  |

#### The idea in case n = 2



Stefano Canino (UW)

H. F. and C. I. on Veronese surfaces

June 24 2025

| N.& P.<br>000000 | H. Fun.<br>0000€0000 |  |
|------------------|----------------------|--|
|                  |                      |  |

# The functions $\mu_1$ and $\mu_2$

Given  $d,t,s\in\mathbb{N}$  such that  $s\leq d^2t+\frac{d(d+3)}{2}$  we define the following two functions:

$$\mu_1(d,t,s) := \underbrace{d^2t + \frac{d(d+3)}{2}}_{H_{V_{2,d}}(t)} - s$$

| N.& P.<br>000000 | H. Fun.<br>0000●0000 |  |
|------------------|----------------------|--|
|                  |                      |  |

# The functions $\mu_1$ and $\mu_2$

Given  $d,t,s\in\mathbb{N}$  such that  $s\leq d^2t+\frac{d(d+3)}{2}$  we define the following two functions:

$$\mu_1(d,t,s):=\underbrace{d^2t+\frac{d(d+3)}{2}}_{H_{V_{2,d}}(t)}-s$$

$$\mu_2(d,t,s) := \begin{cases} \left\lfloor \frac{2d(t+1)+3-\sqrt{1+8\mu_1(d,t,s)}}{2} \right\rfloor, & \text{if } 1 \le \mu_1(d,t,s) \le \binom{d+1}{2} \\ \\ dt-n, & \text{if } \end{cases} \begin{pmatrix} d+1\\2 \end{pmatrix} + dn < \mu_1(d,t,s) \le \binom{d+1}{2} + d(n+1) \\ 0 \le n \le dt \end{cases}$$

| N.& P.<br>000000 | H. Fun.<br>00000●000 |  |
|------------------|----------------------|--|
|                  |                      |  |
|                  |                      |  |

### Characterization of *d*-sequences for n = 2

Since n = 2 we can have just a *d*-sequence of a curve or of a set of points. The former is already solved since for n = 2 curves are divisors, the latter is solved by the following proposition.

Proposition (-, E. Carlini '23)

Let us consider a finite set of reduced points  $\mathbb{X}\subseteq \mathbb{P}^{\frac{d(d+3)}{2}}$  and set

$$t_1 = \max\left\{t \mid H_{\mathbb{X}}(t) = H_{V_{2,d}}(t)\right\}, \quad t_2 = \min\left\{t \mid H_{\mathbb{X}}(t) = |\mathbb{X}|\right\}.$$

Then  $H_{\mathbb{X}}(t)$  is a differentiable (d-1)-sequence if and only if the following conditions hold:

• 
$$\mu_2(d, t_1, \Delta H_{\mathbb{X}}(t_1+1)) \ge \left\lceil \frac{\Delta H_{\mathbb{X}}(t_1+2)}{d} \right\rceil;$$
  
• For all  $t_1 + 2 \le t \le t_2 - 1$ 

$$\left\lfloor \frac{\Delta H_{\mathbb{X}}(t)}{d} \right\rfloor \geq \left\lceil \frac{\Delta H_{\mathbb{X}}(t+1)}{d} \right\rceil.$$

| N.& P.<br>000000 | H. Fun.<br>000000●00 |  |
|------------------|----------------------|--|
|                  |                      |  |

#### Hilbert functions of reduced points on Veronese surfaces

As an immediate consequence we have the following theorem.

Theorem (-, E. Carlini '23)

0

Let  $(h_t)_{t\in\mathbb{N}}$  be the Hilbert function of a finite set of m reduced points in  $\mathbb{P}^{\frac{d(d+3)}{2}}$  and set

$$t_1 = \max\left\{t \mid h(t) = H_{V_{2,d}}(t)\right\} \qquad t_2 = \min\left\{t \mid h(t) = m\right\}.$$

Then there exists  $\mathbb{X} \subseteq V_{2,d} \subseteq \mathbb{P}^N$ ,  $|\mathbb{X}| = m$  such that  $H_{\mathbb{X}}(t) = h_t$  if and only if the following conditions hold

 $\mu_2(d, t_1, \Delta h_{t_1+1}) \ge \left\lceil \frac{\Delta h_{t_1+2}}{d} \right\rceil;$ **a** For all  $t_1 + 2 \le t \le t_2 - 1$  $\left|\frac{\Delta h_t}{d}\right| \ge \left\lceil\frac{\Delta h_{t+1}}{d}\right\rceil.$ 

The proof of the theorem is constructive! (Using Castelnuovo sets)

Stefano Canino (UW)

| N.& P.<br>000000 | H. Fun.<br>0000000€0 |  |
|------------------|----------------------|--|
|                  |                      |  |

Let us consider the sequence  $(h_t)_{t\in\mathbb{N}}$  defined as follows

| t     | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| $h_t$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1256 | 1531 | 1744 | 1956 | 2025 |

and  $h_t = 2025$  for  $t \ge 12$ . This is the Hilbert function of a set of 2025 reduced points in  $\mathbb{P}^{35}$ . We ask whether there exists  $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$  such that  $H_{\mathbb{X}}(t) = h_t$  for all  $t \ge 0$ . First we determine  $t_1$  and  $t_2$ .

Let us consider the sequence  $(h_t)_{t\in\mathbb{N}}$  defined as follows

| t     | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| $h_t$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1256 | 1531 | 1744 | 1956 | 2025 |

and  $h_t = 2025$  for  $t \ge 12$ . This is the Hilbert function of a set of 2025 reduced points in  $\mathbb{P}^{35}$ . We ask whether there exists  $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$  such that  $H_{\mathbb{X}}(t) = h_t$  for all  $t \ge 0$ . First we determine  $t_1$  and  $t_2$ . Since the Hilbert function of  $V_{2,7}$  is  $H_{V_{2,7}}(t) = \binom{2+7t}{2}$ , we have that

| t             | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|---------------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| $^{H}V_{2,7}$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1275 | 1653 | 2080 | 2556 | 3081 |

so that  $t_1 = 6$  and  $t_2 = 11$ .

Let us consider the sequence  $(h_t)_{t\in\mathbb{N}}$  defined as follows

| t     | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| $h_t$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1256 | 1531 | 1744 | 1956 | 2025 |

and  $h_t = 2025$  for  $t \ge 12$ . This is the Hilbert function of a set of 2025 reduced points in  $\mathbb{P}^{35}$ . We ask whether there exists  $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$  such that  $H_{\mathbb{X}}(t) = h_t$  for all  $t \ge 0$ . First we determine  $t_1$  and  $t_2$ . Since the Hilbert function of  $V_{2,7}$  is  $H_{V_{2,7}}(t) = \binom{2+7t}{2}$ , we have that

| t               | 0 | 1  | <b>2</b> | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-----------------|---|----|----------|-----|-----|-----|-----|------|------|------|------|------|
| ${}^{H}V_{2,7}$ | 1 | 36 | 120      | 253 | 435 | 666 | 946 | 1275 | 1653 | 2080 | 2556 | 3081 |

so that  $t_1 = 6$  and  $t_2 = 11$ . To determine  $\mu_1(7, 6, \Delta h_{t_1+1})$  we compute  $\Delta h_{t_1+1}$ . We have that

| t            | 0 | 1  | <b>2</b> | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11 | 12 |
|--------------|---|----|----------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| $\Delta h_t$ | 1 | 35 | 84       | 133 | 182 | 231 | 280 | 310 | 275 | 213 | 212 | 69 | 0  |

and thus  $\mu_1(7, 6, 310) = 7^2 \cdot 6 + \frac{7(7+3)}{2} - 310 = 19.$ 

Let us consider the sequence  $(h_t)_{t\in\mathbb{N}}$  defined as follows

| t     | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| $h_t$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1256 | 1531 | 1744 | 1956 | 2025 |

and  $h_t = 2025$  for  $t \ge 12$ . This is the Hilbert function of a set of 2025 reduced points in  $\mathbb{P}^{35}$ . We ask whether there exists  $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$  such that  $H_{\mathbb{X}}(t) = h_t$  for all  $t \ge 0$ . First we determine  $t_1$  and  $t_2$ . Since the Hilbert function of  $V_{2,7}$  is  $H_{V_{2,7}}(t) = \binom{2+7t}{2}$ , we have that

| t               | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-----------------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| ${}^{H}V_{2,7}$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1275 | 1653 | 2080 | 2556 | 3081 |

so that  $t_1 = 6$  and  $t_2 = 11$ . To determine  $\mu_1(7, 6, \Delta h_{t_1+1})$  we compute  $\Delta h_{t_1+1}$ . We have that

| t            | 0 | 1  | 2  | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11 | 12 |
|--------------|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| $\Delta h_t$ | 1 | 35 | 84 | 133 | 182 | 231 | 280 | 310 | 275 | 213 | 212 | 69 | 0  |

and thus  $\mu_1(7, 6, 310) = 7^2 \cdot 6 + \frac{7(7+3)}{2} - 310 = 19$ . Finally, since  $19 \leq \binom{7+1}{2} = 28$ , we get  $\mu_2(7, 6, 310) = \lfloor \frac{2 \cdot 7(6+1) + 3 - \sqrt{1+8 \cdot 19}}{2} \rfloor = 44$ .

Let us consider the sequence  $(h_t)_{t \in \mathbb{N}}$  defined as follows

| t     | 0 | 1  | 2   | 3   | 4   | 5   | 6   | 7    | 8    | 9    | 10   | 11   |
|-------|---|----|-----|-----|-----|-----|-----|------|------|------|------|------|
| $h_t$ | 1 | 36 | 120 | 253 | 435 | 666 | 946 | 1256 | 1531 | 1744 | 1956 | 2025 |

and  $h_t = 2025$  for  $t \ge 12$ . This is the Hilbert function of a set of 2025 reduced points in  $\mathbb{P}^{35}$ . We ask whether there exists  $\mathbb{X} \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$  such that  $H_{\mathbb{X}}(t) = h_t$  for all  $t \ge 0$ . First we determine  $t_1$  and  $t_2$ . Since the Hilbert function of  $V_{2,7}$  is  $H_{V_{2,7}}(t) = \binom{2+7t}{2}$ , we have that

so that  $t_1 = 6$  and  $t_2 = 11$ . To determine  $\mu_1(7, 6, \Delta h_{t_1+1})$  we compute  $\Delta h_{t_1+1}$ . We have that

and thus  $\mu_1(7, 6, 310) = 7^2 \cdot 6 + \frac{7(7+3)}{2} - 310 = 19$ . Finally, since  $19 \leq \binom{7+1}{2} = 28$ , we get  $\mu_2(7, 6, 310) = \lfloor \frac{2 \cdot 7(6+1) + 3 - \sqrt{1+8 \cdot 19}}{2} \rfloor = 44$ . To check conditions 1. and 2. we compute  $\lfloor \frac{\Delta h_t}{7} \rfloor$  and  $\lceil \frac{\Delta h_t}{7} \rceil$  obtaining the following table

| t                                                 | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7       | 8  | 9  | 10 | 11 | 12 |
|---------------------------------------------------|---|---|----|----|----|----|----|---------|----|----|----|----|----|
| $\left[\frac{\Delta h_t}{7}\right]$               | 1 | 5 | 12 | 19 | 26 | 33 | 40 | $^{45}$ | 40 | 31 | 31 | 10 | 0  |
| $\left\lfloor \frac{\Delta h_t}{7} \right\rfloor$ | 0 | 5 | 12 | 19 | 26 | 33 | 40 | 44      | 39 | 30 | 30 | 9  | 0  |

Since  $\mu_2(7, 6, 310) = 44$  and  $\left\lceil \frac{\Delta h_8}{7} \right\rceil = 40$  condition 1. is satisfied. However condition 2. is not satisfied for t = 9 and hence such an X does not

exist.

Now, we consider the sequence  $(h_t)_{t\in\mathbb{N}}$  defined as follows

| t     | 0 | 1  | 2   | 3   | 4   | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
|-------|---|----|-----|-----|-----|------|------|------|------|------|------|------|
|       |   |    | 100 | 050 | 405 | 0.00 | 0.10 | 1050 | 1501 | 1711 | 1015 | 0005 |
| $h_t$ | 1 | 36 | 120 | 253 | 435 | 666  | 946  | 1256 | 1531 | 1744 | 1915 | 2025 |

and  $h_t = 2024$  for  $t \ge 12$ ; note that this function coincides with the one of the previous example, but for t = 10. We ask whether there exists  $X \subseteq V_{2,7} \subseteq \mathbb{P}^{35}$  such that  $H_{\overline{X}}(t) = h_t$  for all  $t \ge 0$ . As in the previous example we have  $t_1 = 6$  and  $t_2 = 11$ . Moreover, we get

| t                                                 | 0 | 1  | <b>2</b> | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12 |
|---------------------------------------------------|---|----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| $\Delta h_t$                                      | 1 | 35 | 84       | 133 | 182 | 231 | 280 | 310 | 275 | 213 | 201 | 110 | 0  |
| $\left\lceil \frac{\Delta h_t}{7} \right\rceil$   | 1 | 5  | 12       | 19  | 26  | 33  | 40  | 45  | 40  | 31  | 29  | 16  | 0  |
| $\left\lfloor \frac{\Delta h_t}{7} \right\rfloor$ | 0 | 5  | 12       | 19  | 26  | 33  | 40  | 44  | 39  | 30  | 28  | 15  | 0  |

and thus  $\mu_1(7, 6, 310) = 19$  and  $\mu_2(7, 6, 310) = 44$ . Thus, condition 1. is satisfied and condition 2. is satisfied for t = 8, 9, 10. Hence such an X exists.

| N.& P. | H. Fun.   | C.I. |
|--------|-----------|------|
| 000000 | 000000000 | ●000 |
|        |           |      |

### Complete intersections on Veronese surfaces

Proposition (-, E. Carlini '23)

If  $\mathbb{X} \subseteq V_{n,d} \subseteq \mathbb{P}^N$  is a reduced complete intersection, then  $\mathcal{I}(\mathbb{X})$  has a linear generator. Moreover, if  $|\mathbb{X}| > 1$ , then  $\mathcal{I}(\mathbb{X})$  has a quadratic generator.

Theorem (-, E. Carlini '23)

Let  $\mathbb{X} \subseteq V_{2,d} \subseteq \mathbb{P}^N$  be a reduced complete intersection. Then  $\mathbb{X}$  is one of the following:

- **1** a reduced point;
- 2) a set of two reduced points;
- **3** a conic lying on  $V_{2,2} \subset \mathbb{P}^5$ ;
- **4** 2b points lying on a conic on  $V_{2,2} \subset \mathbb{P}^5$  and a hypersurface of degree b.

| N.& P. | H. Fun.   | C.I. |
|--------|-----------|------|
| 000000 | 000000000 | 0●00 |
|        |           |      |

# Complete intersections on $V_{3,2}$

#### Proposition (-, E. Carlini '23)

Let  $\mathbb{X} \subseteq V_{3,2} \subseteq \mathbb{P}^9$  be a reduced complete intersection. Then  $\mathbb{X}$  is one of the following:

- a reduced point;
- ❷ a set of two reduced points;
- a conic;
- 2b points lying on a conic on  $V_{3,2} \subset \mathbb{P}^9$  and a hypersurface of degree b;

| N.& P.<br>000000 | H. Fun.<br>000000000 | C.I.<br>00●0 |
|------------------|----------------------|--------------|
|                  |                      |              |
|                  |                      |              |

# Conjecture

#### Conjecture (-, E. Carlini '23)

Let  $\mathbb{X} \subseteq V_{n,d} \subseteq \mathbb{P}^N$  be a reduced complete intersections with d > 1. Then  $\mathbb{X}$  is one of the following:

- a reduced point;
- a set of two reduced points;
- **8** a conic lying on  $V_{n,2} \subset \mathbb{P}^N$ ;
- 2b points lying on a conic on  $V_{n,2} \subset \mathbb{P}^N$  and a hypersurface of degree b.

Happy birthday, Tony! Thank you for your attention!