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A long-standing (and solved) problem

Problem (G. Cramer, L. Euler, 1744)

Let X a set of points in the plane. When is X the intersection of two curves?

Theorem (L. Euler, 1744)

If a set X C P2 of 9 points is the intersection of two cubics, then every cubic passing through 8 of the 9 passes
through all 9.

The viceversa is true, provided that the 9 points do not lie on a conic.

Theorem (E. Davis, P. Maroscia, 1984)

Let X C P2 a set of £ points and set o == min{t € N | h%(Zx (t)) # 0}. Then, X is a complete intersection if and only
ifa” 2 €N and HO(Zx(t)) = HO(Zy (t)) for any Y C X with{(Y) =£—1 and anyt < a Y4+ a — 3.
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A long-standing (and solved) problem

Problem (G. Cramer, L. Euler, 1744)

Let X a set of points in the plane. When is X the intersection of two curves?

Theorem (L. Euler, 1744)

If a set X C P2 of 9 points is the intersection of two cubics, then every cubic passing through 8 of the 9 passes
through all 9.

The viceversa is true, provided that the 9 points do not lie on a conic.

Theorem (E. Davis, P. Maroscia, 1984)

Let X C P2 a set of £ points and set o == min{t € N | h%(Zx (t)) # 0}. Then, X is a complete intersection if and only
ifa” 2 €N and HO(Zx(t)) = HO(Zy (t)) for any Y C X with{(Y) =£—1 and anyt < a Y4+ a — 3.

What about complete intersection on Veronese surfaces? We classify them using Hilbert functions.
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Basic ingredients

® K is an algebraic closed field, char(K) = 0.

® Qur varieties will always be reduced.

® R=K]lzo,...,Zn] is the coordinate ring of P".

® If d is a positive integer, we set N = (njd) — 1 and we denote the coordinate ring of PV by S = K[yo, - .., yn]-

® Hx(t) := dimg(R/Z(X)); is the Hilbert function of a projective variety X and AHx(t) = Hx(t) — Hx(t — 1) is its
first difference function.

® for each n,d € N>g we denote by v, g : P* — PN the (n, d)-Veronese embedding and by Vi,d = vn,a(P™).
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Hilbert functions of Veronese subvarieties

Using the graded morphism

Pd - S = R
a a
yi = zY

for all a € K, and for ¢ € {0,..., N}, it is easy to see that:
0 if X C V,, 4, then (Z(v,, 3(X)))ia = pa(Z(X)¢).

@ if X is a subvariety of V,, 4 and we set Y = V;Z(X), then

Hy(t) = Hy(td) V t > 0.
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Hilbert functions of Veronese subvarieties

Using the graded morphism

Pd - S = R
a a
yi = zY

for all a € K, and for ¢ € {0,..., N}, it is easy to see that:
0 if X C V,, 4, then (Z(v,, 3(X)))ia = pa(Z(X)¢).

@ if X is a subvariety of V,, 4 and we set Y = V;Z(X), then

Hy(t) = Hy(td) V t > 0.

Theorem (-, E. Carlini '23)

Let h(t) : N — N be the Hilbert function of a projective variety X C PY. Then there exists X’ C Vi,da C PV such that
Hy/ (t) = h(t) if and only there exists k(t) : N — N Hilbert function of a projective variety in P™ such that
h(t) = k(dt).
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0-sequences

If h and i are positive integers, then h can be written uniquely in the form

= () () ()

where n; >mn;_1 >--->n; >j>1. Weset

R<i> — (T:;) + (ni_l + 1) +ot (”j + 1)

i j+1
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0-sequences

If h and i are positive integers, then h can be written uniquely in the form

=)+ Go) o+ ()

where n; >mn;_1 >--->n; >j>1. Weset

R = (T:;) + (m_lz ' 1) Tt (n;'jjll)

Definition

A sequence of non-negative integers (ct)¢cn is called a 0-sequence if co = 1 and c¢+1 < c(t) for all t > 1.

Theorem (Macaulay 27, Stanley, '78)
The following two are equivalent (for K any field):

® (c¢t)ten is the Hilbert function of a standard algebra K[zo,...,zn]/I.

® (ct)ten is a O-sequence.
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Differentiable 0-sequences

If I C K[zo,...,xn] is a radical ideal, there exists a linear form L € K[z, ...,2n]1 such that the following sequence
0—— R/p(-1) 25 Rjp = R /14 (1) — 0

is exact and hence
AHp(t) = Hpyy(@)

Definition

A 0-sequence (bt)ien is called differentiable if the difference sequence (ct)ten, ¢t = bt — by—1 is again a O-sequence
(where b_1 = 0).
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Differentiable 0-sequences

If I C K[zo,...,xn] is a radical ideal, there exists a linear form L € K[z, ...,2n]1 such that the following sequence
0—— R/p(-1) 25 Rjp = R /14 (1) — 0

is exact and hence
AHp(t) = Hpyy(@)

Definition

A 0-sequence (bt)ien is called differentiable if the difference sequence (ct)ten, ¢t = bt — by—1 is again a O-sequence
(where b_1 = 0).

Theorem (A.V. Geramita, P. Maroscia, L. Robert, ’83)
Let K be an infinite field. The following two are equivalent:

® (bt)ien is the Hilbert function of K[zo, ..., zn]/I, with I = /1.

® (bt)ien is a differentiable O-sequence.
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From 0-sequences to d-sequences

Definition (-, E. Carlini ’23)
® A 0-sequence (bt)ten is called d-sequence if there exists a O-sequence (ct)ten such that by = c(gy1)¢-

® A 0-sequence (bt)ien is called differentiable d-sequence if there exists a differentiable 0-sequence (ct)ien such

that by = C(d+1)t-
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From 0-sequences to d-sequences

Definition (-, E. Carlini ’23)
® A 0-sequence (bt)ten is called d-sequence if there exists a O-sequence (ct)ten such that by = c(gy1)¢-

® A 0-sequence (bt)ien is called differentiable d-sequence if there exists a differentiable 0-sequence (ct)ien such

that by = C(d+1)t-

We can now rephrase our theorem as follows.

Theorem (-, E. Carlini ’23)

Let (ht)ten be a sequence of non-negative integers such that hg = 1 and h1 = N + 1. There exists a projective variety
X C Vp,a € PN such that Hx(t) = ht if and only if (ht)¢en is a differentiable (d — 1)-sequence.
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Castelnuovo functions

Proposition (P. Dubreil ’33)

Let X C P2 be a 0-dimensional scheme and let ax := min{t € N | (Z(X); # 0)}. Then there exists ox € N,
ox > ax — 2 such that:

© AHx(t) =0 for t < 0.
® AHx(t)=t+1ifand only if t=0,...,ax — 1.

(
(
© AHx(t) > AHy(t+1) for ax — 1 <t < ox + 1.
© AHx(ox +1) > 0.

(

® AHx(t)=0for t > ox + 1.

AHx(t) is the Castelnuovo function of X.
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Castelnuovo sets

Definition/Theorem (B. Kreuzer, M. Kreuzer, '98)

Let h : Z — N be a Castelnuovo function with invariants oy, and o}, , and let
{50,.. 80,41} CK,{to,...,ta;, -1} C K be sets of pairwise distinct elements. The reduced 0-dimensional subscheme

X(h):={(1:8;:t;) €EP?|0<i+j<op+1,0<5<hiyj}

is called Castelnuovo set for h with parameters so,...,So, +1 and to,...,ta, — 1. Moreover AHx(t) = h(t).
y
N N N N
RERE ANERE ANERE AN
N ERSUH I SGH IS¢
. EL S
An example: hREES NREES NAREE NRERE AN
N N N N N
S S S SRR SRR
t Jo1 2 3 45 67
SO0 Y Sy
ht)[1 2 3 4 4 3 2 0 NEEE JREEL JREE JREEL DRGEL CRRRA ON
NSH EREGE ERAGE ERAGE ERAGH EANSN EhN
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The idea in case n = 2

Let us suppose to have h(t), the Hilbert function of 128 points in P20 defined by the following table:

t Jo 1 2 3 4 5 6
h(t) |1 21 62 100 122 128 128

and we want to construct a k(t) : Z — Z such that h(t) = k(dt), i.e. we want to understand if 3X C V5 5 C P20 such
that Hx(t) = h(t). Since

t
ke = ZAki
i=0

we can construct Ak; instead of ki. Moreover, the condition h(t) = k(dt) imposes that

d

Ahgt1 = Z Akgpti-
=1

We have:
t o 1 2 3 4 5

Ah(t)[1 20 41 38 22 6
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The idea in case n = 2
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The functions p; and o

Given d,t,s € N such that s < d?t + d(d+3) we define the following two functions:
d(d+3
pi(d,t,s) := d%t + w _
Hy, 4 ()
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H. Fun.

000080000

The functions p; and o

d(d+3)

Given d,t,s € N such that s < d?t + we define the following two functions:

pa(d,t, s) :== d%t + M _

Hy, 4 ()

{MGHH?’? % 1+8“1(d’t’S)J, if 1< pa(d,t,s) < (5

pa(d,t,s) == “ " (1) +dn < pa(d,t,s) < (U3 +d(n + 1)
—n, i
0<n<dt
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Characterization of d-sequences for n = 2

Since n = 2 we can have just a d-sequence of a curve or of a set of points. The former is already solved since for n = 2

curves are divisors, the latter is solved by the following proposition.

Proposition (-, E. Carlini ’23)

d(d+3)
Let us consider a finite set of reduced points X CP~ 2 and set

t1 = max {t | Hy(t) = Hvzyd(t)} .ty =min{t| Hx(t) = |X]}.

Then Hx(t) is a differentiable (d — 1)-sequence if and only if the following conditions hold:

)

w2 (d,t1, AHx(t1 + 1)) > [M“

d
® Forallt; +2<t<ty—1

d d

[AHx(t)J . [AHx(t + 1)} .
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Hilbert functions of reduced points on Veronese surfaces

As an immediate consequence we have the following theorem.

Theorem (-, E. Carlini '23)
d(d+3)
Let (ht)ten be the Hilbert function of a finite set of m reduced points in P~ 2 and set

t1 = max {t | h(t) = Hvz,d(t)} ta = min {t | h(t) = m}.

Then there exists X C V5 4 C PN, |X| = m such that Hx(t) = h; if and only if the following conditions hold

(1]

)

Ah
p2(d, t1, Ahgy 1) > [ﬁ—‘

d

) [%)

® Forallt; +2<t<ty—1

The proof of the theorem is constructive! (Using Castelnuovo sets)
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Example 1

Let us consider the sequence (hy)cy defined as follows

t | o 1 2 3 4 5 6 7 8 9 10 11
hy | 1 36 120 253 435 666 946 1256 1531 1744 1956 2025

and hy = 2025 for ¢ > 12. This is the Hilbert function of a set of 2025 reduced points in P35, We ask whether there exists X C Vo 7 C P3% such

that Hy(t) = hy for all t > 0. First we determine ¢] and tg.

June 24 2025 15 /20
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Example 1

Let us consider the sequence (hy)cy defined as follows

t | o 1 2 3 4 5 6 7 8 9 10 11
hy | 1 36 120 253 435 666 946 1256 1531 1744 1956 2025

and hy = 2025 for ¢ > 12. This is the Hilbert function of a set of 2025 reduced points in P35, We ask whether there exists X C Vo 7 C P3% such
that Hy(t) = he for all ¢ > 0. First we determine t1 and ¢2.Since the Hilbert function of Va 7 is Hyy o () = (2§7t), we have that

t | o 1 2 3 4 5 6 7 8 9 10 11
Hy, - ‘ 1 36 120 253 435 666 946 1275 1653 2080 2556 3081

so that t; = 6 and to = 11.
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Example 1

Let us consider the sequence (hy)cy defined as follows

t | o 1 2 3 4 5 6 7 8 9 10 11
hy | 1 36 120 253 435 666 946 1256 1531 1744 1956 2025

and hy = 2025 for ¢ > 12. This is the Hilbert function of a set of 2025 reduced points in P35, We ask whether there exists X C Vo 7 C P3% such
that Hy(t) = he for all ¢ > 0. First we determine t1 and ¢2.Since the Hilbert function of Va 7 is Hyy o () = (2§7t), we have that

t | o 1 2 3 4 5 6 7 8 9 10 11
Hy, - ‘ 1 36 120 253 435 666 946 1275 1653 2080 2556 3081

so that t; = 6 and tg = 11. To determine uj (7,6, Aht1+1) we compute Aht1+1. We have that

t ‘ 0 1 2 3 4 5 6 7 8 9 10 11 12
Ahy ‘ 1 35 84 133 182 231 280 310 275 213 212 69

and thus uq(7,6,310) = 72 - 6 + TE3) _ 310 = 10.
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Example 1

Let us consider the sequence (hy)cy defined as follows

t | o 1 2 3 4 5 6 7 8 9 10 11
hy | 1 36 120 253 435 666 946 1256 1531 1744 1956 2025

and hy = 2025 for ¢ > 12. This is the Hilbert function of a set of 2025 reduced points in P35, We ask whether there exists X C Vo 7 C P3% such
that Hy(t) = he for all ¢ > 0. First we determine t1 and ¢2.Since the Hilbert function of Va 7 is Hyy o () = (2§7t), we have that

t | o 1 2 3 4 5 6 7 8 9 10 11
Hy, - ‘ 1 36 120 253 435 666 946 1275 1653 2080 2556 3081

so that t; = 6 and tg = 11. To determine uj (7,6, Aht1+1) we compute Aht1+1. We have that

t ‘ 0 1 2 3 4 5 6 7 8 9 10 11 12
Ahy ‘ 1 35 84 133 182 231 280 310 275 213 212 69

and thus pq(7,6,310) = 72 - 6 + T3 _ 310 — 10, Finally, since 19 < ("51) = 28, we gt ua(7,6,310) = {% Vl‘*'s'ng — 44,
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Example 1

Let us consider the sequence (hy)cy defined as follows

t | o 1 2 3 4 5 6 7 8 9 10 11
hy | 1 36 120 253 435 666 946 1256 1531 1744 1956 2025

and hy = 2025 for ¢ > 12. This is the Hilbert function of a set of 2025 reduced points in P35, We ask whether there exists X C Vo 7 C P3% such
that Hy(t) = hy for all t > 0. First we determine t] and t3.Since the Hilbert function of Vo 7 is Hy, , () = (2§7t), we have that

.

Hyvy 7 ‘

1 2 3 4 5 6 7 8 9 10 11
36 120 253 435 666 946 1275 1653 2080 2556 3081

=|o

so that t; = 6 and tg = 11. To determine uj (7,6, Aht1+1) we compute Aht1+1. We have that

t ‘ 0 1 2 3 4 5 6 7 8 9 10 11 12
Ahy ‘ 1 35 84 133 182 231 280 310 275 213 212 69

and thus pq(7,6,310) = 72 - 6 + T3 _ 310 — 10, Finally, since 19 < ("51) = 28, we gt ua(7,6,310) = {% Vl‘*'s'ng = 44. To

check conditions 1. and 2. we compute {%J and (%“ obtaining the following table

t [ o 1 2 3 4 5 6 7 8 9 10 11 12
[%] 15 12 19 26 33 40 45 40 31 31 10 0
[#J o 5 12 19 26 33 40 44 39 30 30 9 0

Since po(7,6,310) = 44 and (A—;‘&] = 40 condition 1. is satisfied. However condition 2. is not satisfied for t = 9 and hence such an X does not

exist.
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Example 2

Now, we consider the sequence (ht)¢cpn defined as follows

t ‘ 0 1 2 3 4 5 6 7 8 9 10 11

hy 1 36 120 253 435 666 946 1256 1531 1744 1915 2025

and hy = 2024 for t > 12; note that this function coincides with the one of the previous example, but for ¢ = 10. We ask whether there exists

X C Vo 7 C P35 such that Hy(t) = hy for all t > 0. As in the previous example we have t; = 6 and tp = 11. Moreover, we get

t o 1 2 3 4 5 6 7 8 9 10 1112
Ahy 1 35 84 133 182 231 280 310 275 213 201 110 0
(#] 105 12 19 26 33 40 45 40 31 29 16 0
\_#J 0 5 12 19 26 33 40 44 39 30 28 15 0

and thus pq(7,6,310) = 19 and ug(7, 6, 310) = 44. Thus, condition 1. is satisfied and condition 2. is satisfied for t = 8,9, 10. Hence such an X

exists.
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Complete intersections on Veronese surfaces

Proposition (-, E. Carlini '23)

IfXCV,qC PY is a reduced complete intersection, then Z(X) has a linear generator. Moreover, if [X| > 1, then
Z(X) has a quadratic generator.

Theorem (-, E. Carlini ’23)

Let XC V5 4 C PN be a reduced complete intersection. Then X is one of the following:
® a reduced point;
® a set of two reduced points;

® a conic lying on Va2 C P?;

@ 2b points lying on a conic on Va2 C P® and a hypersurface of degree b.
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Complete intersections on V3 o

Proposition (-, E. Carlini ’23)

Let X C V32 C P? be a reduced complete intersection. Then X is one of the following:
® a reduced point;
® a set of two reduced points;
® a conic;

© 2b points lying on a conic on V32 C P? and a hypersurface of degree b;
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Conjecture

Conjecture (-, E. Carlini '23)

Let XCV, 4 C PN be a reduced complete intersections with d > 1. Then X is one of the following:
® a reduced point;
® a set of two reduced points;
® a conic lying on Vi, 2 C PN;

@ 2b points lying on a conic on Vj, 2 C PN and a hypersurface of degree b.
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Happy birthday, Tony!
Thank you for your attention!
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