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A long-standing (and solved) problem

Problem (G. Cramer, L. Euler, 1744)

Let X a set of points in the plane. When is X the intersection of two curves?

Theorem (L. Euler, 1744)

If a set X ⊂ P2 of 9 points is the intersection of two cubics, then every cubic passing through 8 of the 9 passes
through all 9.

The viceversa is true, provided that the 9 points do not lie on a conic.

Theorem (E. Davis, P. Maroscia, 1984)

Let X ⊂ P2 a set of ℓ points and set α := min{t ∈ N | h0(IX(t)) ̸= 0}. Then, X is a complete intersection if and only
if α−1ℓ ∈ N and H0(IX(t)) = H0(IY (t)) for any Y ⊂ X with ℓ(Y ) = ℓ− 1 and any t ≤ α−1ℓ+ α− 3.

What about complete intersection on Veronese surfaces? We classify them using Hilbert functions.
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Basic ingredients

• K is an algebraic closed field, char(K) = 0.

• Our varieties will always be reduced.

• R = K[x0, . . . , xn] is the coordinate ring of Pn.

• If d is a positive integer, we set N =
(n+d

d

)
− 1 and we denote the coordinate ring of PN by S = K[y0, . . . , yN ].

• HX(t) := dimK(R/I(X))t is the Hilbert function of a projective variety X and ∆HX(t) = HX(t)−HX(t− 1) is its
first difference function.

• for each n, d ∈ N>0 we denote by νn,d : Pn → PN the (n, d)-Veronese embedding and by Vn,d := νn,d(Pn).
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Hilbert functions of Veronese subvarieties

Using the graded morphism
φd : S → R

a 7→ a

yi 7→ xαi

for all a ∈ K, and for i ∈ {0, . . . , N}, it is easy to see that:

1 if X ⊆ Vn,d, then (I(ν−1
n,d(X)))td = φd(I(X)t).

2 if X is a subvariety of Vn,d and we set Y = ν−1
n,d(X), then

HX(t) = HY(td) ∀ t ≥ 0.

Theorem (-, E. Carlini ’23)

Let h(t) : N → N be the Hilbert function of a projective variety X ⊆ PN . Then there exists X′ ⊆ Vn,d ⊆ PN such that
HX′ (t) = h(t) if and only there exists k(t) : N → N Hilbert function of a projective variety in Pn such that
h(t) = k(dt).
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0-sequences

If h and i are positive integers, then h can be written uniquely in the form

h =
(ni

i

)
+

(ni−1

i− 1

)
+ · · ·+

(nj

j

)
where ni > ni−1 > · · · > nj ≥ j ≥ 1. We set

h<i> =
(ni + 1

i+ 1

)
+

(ni−1 + 1

i

)
+ · · ·+

(nj + 1

j + 1

)

Definition

A sequence of non-negative integers (ct)t∈N is called a 0-sequence if c0 = 1 and ct+1 ≤ c⟨t⟩ for all t ≥ 1.

Theorem (Macaulay ’27, Stanley, ’78)

The following two are equivalent (for K any field):

• (ct)t∈N is the Hilbert function of a standard algebra K[x0, . . . , xn]/I.

• (ct)t∈N is a 0-sequence.
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Differentiable 0-sequences

If I ⊆ K[x0, . . . , xn] is a radical ideal, there exists a linear form L ∈ K[x0, . . . , xn]1 such that the following sequence

0 R /I (−1) R /I R
/
I + (L) 0L π

is exact and hence
∆HI(t) = HI+(L)(t)

Definition

A 0-sequence (bt)t∈N is called differentiable if the difference sequence (ct)t∈N, ct = bt − bt−1 is again a 0-sequence
(where b−1 = 0).

Theorem (A.V. Geramita, P. Maroscia, L. Robert, ’83)

Let K be an infinite field. The following two are equivalent:

• (bt)t∈N is the Hilbert function of K[x0, . . . , xn]/I, with I =
√
I.

• (bt)t∈N is a differentiable 0-sequence.
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From 0-sequences to d-sequences

Definition (-, E. Carlini ’23)

• A 0-sequence (bt)t∈N is called d-sequence if there exists a 0-sequence (ct)t∈N such that bt = c(d+1)t.

• A 0-sequence (bt)t∈N is called differentiable d-sequence if there exists a differentiable 0-sequence (ct)t∈N such
that bt = c(d+1)t.

We can now rephrase our theorem as follows.

Theorem (-, E. Carlini ’23)

Let (ht)t∈N be a sequence of non-negative integers such that h0 = 1 and h1 = N + 1. There exists a projective variety
X ⊆ Vn,d ⊆ PN such that HX(t) = ht if and only if (ht)t∈N is a differentiable (d− 1)-sequence.
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Castelnuovo functions

Proposition (P. Dubreil ’33)

Let X ⊆ P2 be a 0-dimensional scheme and let αX := min{t ∈ N | (I(X)t ̸= 0)}. Then there exists σX ∈ N,
σX ≥ αX − 2 such that:

1 ∆HX(t) = 0 for t < 0.

2 ∆HX(t) = t+ 1 if and only if t = 0, . . . , αX − 1.

3 ∆HX(t) ≥ ∆HX(t+ 1) for αX − 1 ≤ t ≤ σX + 1.

4 ∆HX(σX + 1) > 0.

5 ∆HX(t) = 0 for t > σX + 1.

∆HX(t) is the Castelnuovo function of X.
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Castelnuovo sets

Definition/Theorem (B. Kreuzer, M. Kreuzer, ’98)

Let h : Z → N be a Castelnuovo function with invariants αh and σh , and let
{s0, . . . , sσh+1} ⊆ K, {t0, . . . , tαh−1} ⊆ K be sets of pairwise distinct elements. The reduced 0-dimensional subscheme

X(h) := {(1 : si : tj) ∈ P2 | 0 ≤ i+ j ≤ σh + 1, 0 ≤ j ≤ hi+j}

is called Castelnuovo set for h with parameters s0, . . . , sσh+1 and t0, . . . , tαh − 1. Moreover ∆HX(t) = h(t).

An example:

t 0 1 2 3 4 5 6 7

h(t) 1 2 3 4 4 3 2 0
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The idea in case n = 2

Let us suppose to have h(t), the Hilbert function of 128 points in P20 defined by the following table:

t 0 1 2 3 4 5 6

h(t) 1 21 62 100 122 128 128

and we want to construct a k(t) : Z → Z such that h(t) = k(dt), i.e. we want to understand if ∃ X ⊆ V2,5 ⊆ P20 such
that HX(t) = h(t). Since

kt =
t∑

i=0

∆ki

we can construct ∆kt instead of kt. Moreover, the condition h(t) = k(dt) imposes that

∆ht+1 =
d∑

i=1

∆kdt+i.

We have:
t 0 1 2 3 4 5 6

∆h(t) 1 20 41 38 22 6 0
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The idea in case n = 2
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The functions µ1 and µ2

Given d, t, s ∈ N such that s ≤ d2t+
d(d+3)

2
we define the following two functions:

µ1(d, t, s) := d2t+
d(d+ 3)

2︸ ︷︷ ︸
HV2,d

(t)

−s

µ2(d, t, s) :=


⌊
2d(t+1)+3−

√
1+8µ1(d,t,s)

2

⌋
, if 1 ≤ µ1(d, t, s) ≤

(d+1
2

)
dt− n, if

(d+1
2

)
+ dn < µ1(d, t, s) ≤

(d+1
2

)
+ d(n+ 1)

0 ≤ n ≤ dt
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Characterization of d-sequences for n = 2

Since n = 2 we can have just a d-sequence of a curve or of a set of points. The former is already solved since for n = 2

curves are divisors, the latter is solved by the following proposition.

Proposition (-, E. Carlini ’23)

Let us consider a finite set of reduced points X ⊆ P
d(d+3)

2 and set

t1 = max
{
t | HX(t) = HV2,d

(t)
}
, t2 = min {t | HX(t) = |X|} .

Then HX(t) is a differentiable (d− 1)-sequence if and only if the following conditions hold:

1

µ2(d, t1,∆HX(t1 + 1)) ≥
⌈
∆HX(t1 + 2)

d

⌉
;

2 For all t1 + 2 ≤ t ≤ t2 − 1 ⌊
∆HX(t)

d

⌋
≥

⌈
∆HX(t+ 1)

d

⌉
.
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Hilbert functions of reduced points on Veronese surfaces

As an immediate consequence we have the following theorem.

Theorem (-, E. Carlini ’23)

Let (ht)t∈N be the Hilbert function of a finite set of m reduced points in P
d(d+3)

2 and set

t1 = max
{
t | h(t) = HV2,d

(t)
}

t2 = min {t | h(t) = m} .

Then there exists X ⊆ V2,d ⊆ PN , |X| = m such that HX(t) = ht if and only if the following conditions hold

1

µ2(d, t1,∆ht1+1) ≥
⌈
∆ht1+2

d

⌉
;

2 For all t1 + 2 ≤ t ≤ t2 − 1 ⌊
∆ht

d

⌋
≥

⌈
∆ht+1

d

⌉
.

The proof of the theorem is constructive! (Using Castelnuovo sets)
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Example 1

Let us consider the sequence (ht)t∈N defined as follows

t 0 1 2 3 4 5 6 7 8 9 10 11

ht 1 36 120 253 435 666 946 1256 1531 1744 1956 2025

and ht = 2025 for t ≥ 12. This is the Hilbert function of a set of 2025 reduced points in P35. We ask whether there exists X ⊆ V2,7 ⊆ P35 such

that HX(t) = ht for all t ≥ 0. First we determine t1 and t2.

Since the Hilbert function of V2,7 is HV2,7
(t) =

(
2+7t

2

)
, we have that

t 0 1 2 3 4 5 6 7 8 9 10 11

HV2,7
1 36 120 253 435 666 946 1275 1653 2080 2556 3081

so that t1 = 6 and t2 = 11. To determine µ1(7, 6,∆ht1+1) we compute ∆ht1+1. We have that

t 0 1 2 3 4 5 6 7 8 9 10 11 12

∆ht 1 35 84 133 182 231 280 310 275 213 212 69 0

and thus µ1(7, 6, 310) = 72 · 6 +
7(7+3)

2
− 310 = 19. Finally, since 19 ≤

(
7+1
2

)
= 28, we get µ2(7, 6, 310) =

⌊
2·7(6+1)+3−

√
1+8·19

2

⌋
= 44. To

check conditions 1. and 2. we compute
⌊
∆ht
7

⌋
and

⌈
∆ht
7

⌉
obtaining the following table

t 0 1 2 3 4 5 6 7 8 9 10 11 12⌈
∆ht
7

⌉
1 5 12 19 26 33 40 45 40 31 31 10 0⌊

∆ht
7

⌋
0 5 12 19 26 33 40 44 39 30 30 9 0

Since µ2(7, 6, 310) = 44 and
⌈∆h8

7

⌉
= 40 condition 1. is satisfied. However condition 2. is not satisfied for t = 9 and hence such an X does not

exist.
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and ht = 2025 for t ≥ 12. This is the Hilbert function of a set of 2025 reduced points in P35. We ask whether there exists X ⊆ V2,7 ⊆ P35 such

that HX(t) = ht for all t ≥ 0. First we determine t1 and t2.Since the Hilbert function of V2,7 is HV2,7
(t) =

(
2+7t

2

)
, we have that

t 0 1 2 3 4 5 6 7 8 9 10 11

HV2,7
1 36 120 253 435 666 946 1275 1653 2080 2556 3081

so that t1 = 6 and t2 = 11. To determine µ1(7, 6,∆ht1+1) we compute ∆ht1+1. We have that

t 0 1 2 3 4 5 6 7 8 9 10 11 12

∆ht 1 35 84 133 182 231 280 310 275 213 212 69 0

and thus µ1(7, 6, 310) = 72 · 6 +
7(7+3)

2
− 310 = 19. Finally, since 19 ≤

(
7+1
2

)
= 28, we get µ2(7, 6, 310) =

⌊
2·7(6+1)+3−

√
1+8·19

2

⌋
= 44. To

check conditions 1. and 2. we compute
⌊
∆ht
7

⌋
and

⌈
∆ht
7

⌉
obtaining the following table

t 0 1 2 3 4 5 6 7 8 9 10 11 12⌈
∆ht
7

⌉
1 5 12 19 26 33 40 45 40 31 31 10 0⌊

∆ht
7

⌋
0 5 12 19 26 33 40 44 39 30 30 9 0

Since µ2(7, 6, 310) = 44 and
⌈∆h8

7

⌉
= 40 condition 1. is satisfied. However condition 2. is not satisfied for t = 9 and hence such an X does not

exist.
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Example 2

Now, we consider the sequence (ht)t∈N defined as follows

t 0 1 2 3 4 5 6 7 8 9 10 11

ht 1 36 120 253 435 666 946 1256 1531 1744 1915 2025

and ht = 2024 for t ≥ 12; note that this function coincides with the one of the previous example, but for t = 10. We ask whether there exists
X ⊆ V2,7 ⊆ P35 such that HX(t) = ht for all t ≥ 0. As in the previous example we have t1 = 6 and t2 = 11. Moreover, we get

t 0 1 2 3 4 5 6 7 8 9 10 11 12

∆ht 1 35 84 133 182 231 280 310 275 213 201 110 0

⌈
∆ht
7

⌉
1 5 12 19 26 33 40 45 40 31 29 16 0

⌊
∆ht
7

⌋
0 5 12 19 26 33 40 44 39 30 28 15 0

and thus µ1(7, 6, 310) = 19 and µ2(7, 6, 310) = 44. Thus, condition 1. is satisfied and condition 2. is satisfied for t = 8, 9, 10. Hence such an X

exists.
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Complete intersections on Veronese surfaces

Proposition (-, E. Carlini ’23)

If X ⊆ Vn,d ⊆ PN is a reduced complete intersection, then I(X) has a linear generator. Moreover, if |X| > 1, then
I(X) has a quadratic generator.

Theorem (-, E. Carlini ’23)

Let X ⊆ V2,d ⊆ PN be a reduced complete intersection. Then X is one of the following:

1 a reduced point;

2 a set of two reduced points;

3 a conic lying on V2,2 ⊂ P5;

4 2b points lying on a conic on V2,2 ⊂ P5 and a hypersurface of degree b.
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Complete intersections on V3,2

Proposition (-, E. Carlini ’23)

Let X ⊆ V3,2 ⊆ P9 be a reduced complete intersection. Then X is one of the following:

1 a reduced point;

2 a set of two reduced points;

3 a conic;

4 2b points lying on a conic on V3,2 ⊂ P9 and a hypersurface of degree b;
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Conjecture

Conjecture (-, E. Carlini ’23)

Let X ⊆ Vn,d ⊆ PN be a reduced complete intersections with d > 1. Then X is one of the following:

1 a reduced point;

2 a set of two reduced points;

3 a conic lying on Vn,2 ⊂ PN ;

4 2b points lying on a conic on Vn,2 ⊂ PN and a hypersurface of degree b.
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Happy birthday, Tony!
Thank you for your attention!
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