Logarithmic differential forms and questions of residues.

Michel Granger University of Angers, France

Colloque Jordan Types of Artinian Algebras and Geometry of Punctual Hilbert Schemes. Nice, June 23-27, 2025

Joint work with Mathias Schulze and Delphine Pol.

A (1) > A (2) > A

Basic definitions. Residues along plane curves

Contents

Basic definitions.

2 Logarithmic residues and duality.

- 3 Normal crossing conditions
- 4 Residues along plane curves

I. Basic definitions.

Let $D \subset S = (\mathbb{C}^n, 0)$ be a reduced hypersurface, with equation

h = 0

. We set : $\Theta_S := \mathsf{Der}_{\mathbb{C}}(\mathscr{O}_S) = \mathsf{Hom}_{\mathscr{O}_S}(\Omega^1_S, \mathscr{O}_S), \quad \Omega^p_S(D) = \Omega^p_S \cdot \frac{1}{h}$

Definition (K. Saito)

$$\Omega^{p}(\log D) := \{ \omega \in \Omega^{p}_{S}(D) \mid d\omega \in \Omega^{p+1}_{S}(D) \}$$

Der $(-\log D) := \{ \delta \in \Theta_{S} \mid \delta(h) \in \mathscr{I}_{D} := \mathscr{O}_{S} \cdot h \}$

All these modules are coherent and reflexive. In particular

$$\Omega^{1}(\log D) = \operatorname{Hom}_{\mathscr{O}_{S}}(\operatorname{Der}(-\log D), \mathscr{O}_{S}), \text{ and}$$
$$\operatorname{Der}(-\log D) = \operatorname{Hom}_{\mathscr{O}_{S}}(\Omega^{1}(\log D), \mathscr{O}_{S})$$

э

Let $\Sigma = Sing(D)$, with $\mathscr{O}_{\Sigma} = \mathscr{O}_S/(J(h), h) = \mathscr{O}_D/\mathscr{J}_D$. We have the following exact sequence :

$$(1.1) \qquad 0 \longrightarrow \mathsf{Der}(-\log D) \hookrightarrow \Theta_S \xrightarrow{dh} \mathscr{J}_D \longrightarrow 0$$

Definition

The divisor D is free iff $Der(-\log D)$ or alternatively $\Omega^1(\log D)$ is a free module.

Here are two characterisations of freeness.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Theorem (Saito criterion.)

The divisor D is free iff there are $\delta_1, \dots, \delta_n \in \text{Der}(-\log D)$ such that

$$det(\delta_1, \cdots, \delta_n) = uh \quad u \text{ a unit}$$

Theorem (Terao in qh case, Aleksandrov.)

The following three conditions are equivalent :

- The divisor D is free.
- **2** \mathscr{J}_D is Cohen Macaulay (maximal as \mathscr{O}_D -module.)
- **3** \mathscr{O}_{Σ} is Cohen Macaulay, of dimension n-2.

The proof essentially uses the Auslander-Buchsbaum formula. NB : A divisor D has Gorenstein singular locus Z of codimension 1 if and only if D is locally the product of a quasihomogeneous plane curve and a smooth space.

II. Logarithmic residues

Saito proves that $\omega \in \Omega^p(\log D)$ iff there is $g \in \mathcal{O}_S$ non zero divisor in \mathcal{O}_D and there are holomorphic forms ξ, η such that :

$$g\omega = rac{dh}{h} \wedge \xi + \eta,$$

Definition

The residue of ω is the meromorphic $(q-1)\text{-}{\rm form}$ on D or equivalently on the normalization \tilde{D} :

$$\rho_D^p(\omega) := \frac{\xi}{g}|_D \in \Omega_D^{p-1} \otimes Q(\mathscr{O}_D) = \Omega_{\widetilde{D}}^{p-1} \otimes Q(\mathscr{O}_{\widetilde{D}})$$

We set $ho_D^1 =
ho_D$, $\mathscr{R}_D :=
ho_D(\Omega^1(\log D)) \subset Q(\mathscr{O}_D)$

ヘロト ヘ河ト ヘヨト ヘヨト

3

Properties of \mathcal{R}_D .

Proposition

We have $\mathscr{O}_{\tilde{D}}\subset \mathscr{R}_D$ and there is an exact sequence :

$$(2.1) \qquad 0 \longrightarrow \Omega^1_S \longrightarrow \Omega^1(\log D) \xrightarrow{\rho_D} \mathscr{R}_D \longrightarrow 0.$$

Applying Hom (\bullet, \mathscr{O}_S) we obtain :

Proposition (G, M. Schulze)

1) There is an exact sequence

$$0 \longrightarrow \mathsf{Der}(-\log D) \longrightarrow \Theta_S \xrightarrow{\sigma_D} \mathscr{R}_D^{\vee} \longrightarrow \mathsf{Ext}^1_{\mathscr{O}_S}(\Omega^1(\log D), \mathscr{O}_S)$$

2) The image of σ_D is $\mathscr{J}_D \subset \mathscr{R}_D^{\vee}$ and we always have $\mathscr{R}_D = \mathscr{J}_D^{\vee}$. 3) When D is free $\mathscr{J}_D = \mathscr{R}_D^{\vee}$

The presence of the dual residue module \mathscr{R}_D^{\vee} comes from the *change of ring formula* :

$$\mathscr{R}_D^{\vee} := \operatorname{Hom}_{\mathscr{O}_D}(\mathscr{R}_D, \mathscr{O}_D) = \operatorname{Ext}^1_{\mathscr{O}_S}(\mathscr{R}_D, \mathscr{O}_S)$$

 There is an involution on maximal CM fractional ideals in Q(O_D), (de Jong and Van Straten). We obtain a chain :

$$\mathscr{J}_D \subseteq \mathscr{R}_D^{\vee} \subseteq \mathscr{C}_D \subseteq \mathscr{O}_D \subseteq \mathscr{O}_{\widetilde{D}} \subseteq \mathscr{R}_D = \mathscr{J}_D^{\vee}$$

- If D is free, then $\mathscr{J}_D = \mathscr{R}_D^{\vee}$ as fractional ideals.
- We call $\mathscr{R}_D = \mathscr{O}_{\widetilde{D}}$ the normal crossing condition.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Normal crossing condition.

Theorem (Saito)

For a divisor D in a complex manifold S, consider the following conditions:

- the local fundamental groups of the complement S\D are Abelian;
- in codimension one, that is, outside of an analytic subset of codimension at least 2 in D, D is a normal crossing;
- Ithe residue of any logarithmic 1-form along D is a weakly holomorphic function on D.

Then the implications $(A) \Rightarrow (B) \Rightarrow (C)$ hold true.

< ロ > < 同 > < 三 > < 三 >

In his 1980 paper Saito asked for the converse implications:

Theorem (Lê Dung Tràng and K.Saito 1984)

The implication (A) \leftarrow (B) in Theorem 3.1 holds true.

Theorem (G, Mathias Schulze)

The implication (B) \leftarrow (C) in Theorem 3.1 holds true: if the residue of any logarithmic 1-form along D is a weakly holomorphic function on D then D is a normal crossing in codimension one.

The proof consists in passing to a nearby point, where D is free.

くロ と く 同 と く ヨ と 一

Characterization of normal crossing divisors

A normal crossing divisor is free and \mathscr{J}_D is a radical ideal of \mathscr{O}_D . A partial converse is :

Theorem (E. Faber, G and M. Schulze.)

For a free divisor with smooth normalization, any of the conditions

- The ideal $\mathscr{J}_h=(h'_{x_1},\cdots,h'_{x_n})\subset \mathscr{O}_S$ is a radical ideal
- Any of the equivalent conditions (A), (B), (C),
- The Jacobian ideal \mathcal{J}_D is radical.

imply that D is a normal crossing divisor.

Question (E. Faber) In i) or iii), can one get rid of the smoothness hypothesis?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Three examples.

1) The whitney umbrella $W = \{h = x^2 - y^2 z = 0\}$ satisfies (B). Its normalization is smooth isomorphic to \mathbb{C}^2 :

$$\mathscr{O}_W \subset \mathbb{C}\{u,y\} = \mathscr{O}_{\widetilde{W}}$$
, , with $z = u^2, x = uy$

We find $\Omega^1(\log D) = \mathcal{O}\frac{dh}{h} + \mathcal{O}\omega + \mathcal{O}dy + \mathcal{O}dz$, with $\omega = \frac{yzdx - xzdy - xy/2dz}{h}$, we check that $\mathcal{R}_D = \mathcal{O}_{\widetilde{W}}$ since

$$y\omega = rac{x}{2}rac{dh}{h} - dx, \quad \operatorname{Res}(2\omega) = u = \sqrt{z}$$

By this example freeness is necessary in the last theorem. 2) Let \mathscr{A} be a generic hyperplane arrangement. With equation $\prod \ell_i = 0$ then we have

$$\Omega^1(\log A) = \sum \mathscr{O} \cdot \frac{d\ell_i}{\ell_i}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3) Let $C \subset \mathbb{P}^2$ be a nodal curve. We should check $\mathscr{R}_X = \mathscr{O}_{\widetilde{X}}$. Example : the cone on the cubic nodal curve.

$$h := y^2 z - x^2 (z + x) = 0.$$

 $\mathscr{O}_X = \mathbb{C}[x+z, y, z] = \mathbb{C}[t^2u, t^3 - tu^2, u^3] \subset \mathscr{O}_{\widetilde{X}} = \mathbb{C}[t^3, t^2u, tu^2, u^3],$ with $t^2u = x + z, tu^2 = \frac{yz}{x}$. We find $tu^2 = \text{Res}(\alpha/h),$

$$\alpha = -(2z+3x)yzdx + 2xz(z+x)dy + x^2ydz$$

Because $x\alpha = yz \cdot dh \pmod{f\Omega^1_{\mathbb{C}^3}}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

4) The cuspidal curve $y^2 - x^3 = 0$, with normalization $\mathbb{C}\{x, y\}/f \to \mathbb{C}\{t\}$ given by : $x = t^2, y = t^3$. $\Omega^1(\log D)$ is generated by the two forms :

$$\omega_0 = \frac{df}{f}, \qquad \omega_1 = \frac{-3ydx + 2xdy}{f}$$

An easy calculation yields

$$y\omega_1 = -3dx + rac{df}{f}$$
, hence $Res(\omega_1) = rac{x}{y} = rac{1}{t}$.

We check from this that $\mathscr{R}_D = \frac{1}{t} \mathbb{C}\{t\} \stackrel{\supset}{\neq} \mathscr{O}_{\widetilde{D}}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Going further.

Among many generalizations and applications I will only discuss here the following :

When D does not satisfy (A), (B) or (C), how to determine $\mathscr{R}_D \stackrel{\supset}{\neq} \mathscr{O}_{\tilde{D}}$ In the case of curves. A detailed answer in terms of the semigroup of multivaluations is given by Delphine Pol.

伺 ト イヨト イヨト

Semigroup of a curve.

Let $(D,0) = \bigcup_{i=1}^{p} D_i \subset (S,0)$ be a reduced curve, with normalization :

$$\mathscr{O}_D \hookrightarrow \mathscr{O}_{\tilde{D}} \simeq \mathbb{C}\{t_1\} \oplus \cdots \oplus \mathbb{C}\{t_p\}.$$

The value of $g \in Q(\mathscr{O}_D)$, is the *p*-uple of valuations w.r. to t_j 's

$$\operatorname{val}(g) = (\operatorname{val}_1(g), \cdots, \operatorname{val}_p(g)) \in (\mathbb{Z} \cup \{\infty\})^p$$

Let $\operatorname{val}(I) \subset \mathbb{Z}^p$ be the set of values on non zero divisors in *I*.

Definition

The semigroup of D is $\Gamma = \operatorname{val}(\mathscr{O}_D) \subset \mathbb{N}^p$.

There is $\underline{\gamma} \in \mathbb{N}^p$ with $\operatorname{val}(\mathscr{C}_{\mathrm{D}}) = (\gamma_1, \cdots, \gamma_{\mathrm{p}}) + \mathbb{N}^{\mathrm{p}}$. More generally each fractional ideal $I \subset Q(\mathscr{O}_D)$ has a conductor

$$u \in \mathbb{Z}^p, \operatorname{val}(\mathrm{I}) \supset \nu + \mathbb{N}^p$$

A symmetry result.

Theorem (Delgado)

The ring \mathcal{O}_D is Gorenstein iff the semi group Γ has the following property:

$$\forall v \in \mathbb{Z}^p, v \in \Gamma \Longleftrightarrow \Delta(\gamma - v - (1, \cdots, 1), \mathscr{O}_D) = \emptyset$$

For sake of simplicity we limit ourselves to th irreducible case :

$$\forall \mathbf{v} \in \mathbb{Z}, \mathbf{v} \in \mathsf{\Gamma} \Longleftrightarrow \gamma - \mathbf{v} - 1 \notin \mathsf{\Gamma}$$

This result extends to dual couples like \mathscr{J}_D and \mathscr{R}_D .

| 4 同 ト 4 ヨ ト 4 ヨ ト

э

Theorem (D. Pol)

Let D be a plane branch. Then the set of values of the module of logarithmic residues is determined by \mathcal{J}_D :

$$\mathbf{v} \in \operatorname{val}(\mathscr{R}_{\mathrm{D}}) \Longleftrightarrow \gamma - \mathrm{v} - 1 \notin \operatorname{val}(\mathscr{J}_{\mathrm{D}})$$

Link with Kähler differentials We consider the module Ω_C^1 , and its set of values, giving each *dt* the value 1.

Proposition (G, D.Pol)

We have:
$$\operatorname{val}(\mathscr{J}_{\mathrm{C}}) = \gamma + \operatorname{val}(\Omega^{1}_{\mathrm{C}}) - 1$$

We use a formula by R. Piene's formula relating these fractionnal ideals with the ramification locus \mathscr{R}_{ν} of the normalization.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary (D. Pol)

$$\mathsf{v} \in \operatorname{val}(\mathscr{R}_{\mathrm{D}}) \Longleftrightarrow \Delta(-\mathrm{v}, \Omega^{1}_{\mathrm{D}}) = \emptyset$$

Example Let D be the curve $y^5 - x^6$.

$$\begin{aligned} \operatorname{val}(\Omega_{\mathrm{D}}^{1}) &= \operatorname{val}(\mathscr{O}_{\mathrm{D}}) \setminus \{0\} = \{5, 6, 10, 11, 12, 15, 16, 17, 18, 20, \ldots\}, \\ \operatorname{val}(\mathscr{R}_{\mathrm{D}}) &= \{-19, -14, -13, -9, -8, -7, -4, -3, -2, -1\} \cup \mathbb{N}. \end{aligned}$$

Notice that dim $\mathscr{R}_D/\mathscr{O}_D = \dim \mathscr{O}_D/\mathscr{J}_D = \tau$ the Tjurina number and dim $\mathscr{R}_D/\mathscr{O}_{\tilde{D}} = \tau - \delta$.

イロト 不得 トイヨト イヨト 二日

We give a picture for the case of $f = (x^2 - y^3)(x^4 - y^3)$, $\mu = 19$, $\delta = 10$, $\tau = 17$, $\gamma = (8, 12)$, $\gamma_{\mathscr{J}} = (12, 20)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Figure: Multi-values of \mathscr{R}_D

Michel Granger University of Angers, France Logarithmic differential forms and questions of residues.

・ロト ・四ト ・ヨト ・ヨト

æ

In this way \mathscr{R}_D is related to the problem of moduli space for plane branches with a given semi group Γ

Theorem (Hefez,Hernandez)

The set of analytic classes $\mathscr M$ of plane branches with given topological type satisfies

$$\mathscr{M} = \bigcup_{\Omega^1_D = \Omega} \mathscr{M}_{\Omega}.$$

Each \mathcal{M}_{Ω} is separated and a quotient by a finite group of an affine open space.

イロト イポト イラト イラト

Happy birthday, Tony! Thank you for your attention