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I. Basic definitions.

Let D ⊂ S = (Cn, 0) be a reduced hypersurface, with equation

h = 0

.We set : ΘS := DerC(OS) = HomOS
(Ω1

S ,OS), Ωp
S(D) = Ωp

S · 1
h

Definition (K. Saito)

Ωp(logD) := {ω ∈ Ωp
S(D) | dω ∈ Ωp+1

S (D)}
Der(− logD) := {δ ∈ ΘS | δ(h) ∈ ID := OS · h}

All these modules are coherent and reflexive. In particular

Ω1(logD) = HomOS
(Der(− logD),OS), and

Der(− logD) = HomOS
(Ω1(logD),OS)
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Let Σ = Sing(D), with OΣ = OS/(J(h), h) = OD/JD . We have
the following exact sequence :

(1.1) 0 // Der(− logD) �
�

// ΘS
dh //JD

// 0

Definition

The divisor D is free iff Der(− logD) or alternatively Ω1(logD) is
a free module.

Here are two characterisations of freeness.
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Theorem (Saito criterion.)

The divisor D is free iff there are δ1, · · · , δn ∈ Der(− logD) such
that

det(δ1, · · · , δn) = uh u a unit

Theorem (Terao in qh case, Aleksandrov.)

The following three conditions are equivalent :

1 The divisor D is free.

2 JD is Cohen Macaulay (maximal as OD-module.)

3 OΣ is Cohen Macaulay, of dimension n − 2.

The proof essentially uses the Auslander-Buchsbaum formula.
NB : A divisor D has Gorenstein singular locus Z of codimension 1
if and only if D is locally the product of a quasihomogeneous plane
curve and a smooth space.
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II. Logarithmic residues

Saito proves that ω ∈ Ωp(logD) iff there is g ∈ OS non zero
divisor in OD and there are holomorphic forms ξ, η such that :

gω =
dh

h
∧ ξ + η,

Definition

The residue of ω is the meromorphic (q − 1)-form on D or
equivalently on the normalization D̃ :

ρpD(ω) :=
ξ

g
|D ∈ Ωp−1

D ⊗ Q(OD) = Ωp−1

D̃
⊗ Q(OD̃)

We set ρ1D = ρD , RD := ρD(Ω
1(logD)) ⊂ Q(OD)
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Properties of RD .

Proposition

We have OD̃ ⊂ RD and there is an exact sequence :

(2.1) 0 // Ω1
S

// Ω1(logD)
ρD // RD

// 0.

Applying Hom(•,OS) we obtain :

Proposition (G, M. Schulze)

1) There is an exact sequence

0 // Der(− logD) // ΘS
σD // R∨

D
// Ext1OS

(Ω1(logD),OS)

2) The image of σD is JD ⊂ R∨
D and we always have RD = J ∨

D .
3) When D is free JD = R∨

D
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The presence of the dual residue module R∨
D comes from the

change of ring formula :

R∨
D := HomOD

(RD ,OD) = Ext1OS
(RD ,OS)

There is an involution on maximal CM fractional ideals in
Q(OD), (de Jong and Van Straten). We obtain a chain :

JD ⊆ R∨
D ⊆ CD ⊆ OD ⊆ O

D̃
⊆ RD = J ∨

D

If D is free, then JD = R∨
D as fractional ideals.

We call RD = O
D̃
the normal crossing condition.
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Normal crossing condition.

Theorem (Saito)

For a divisor D in a complex manifold S , consider the following
conditions:

(A) the local fundamental groups of the complement S\D are
Abelian;

(B) in codimension one, that is, outside of an analytic subset of
codimension at least 2 in D, D is a normal crossing;

(C) the residue of any logarithmic 1-form along D is a weakly
holomorphic function on D.

Then the implications (A) ⇒ (B) ⇒ (C) hold true.
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In his 1980 paper Saito asked for the converse implications:

Theorem (Lê Dung Tràng and K.Saito 1984)

The implication (A) ⇐ (B) in Theorem 3.1 holds true.

Theorem (G, Mathias Schulze)

The implication (B) ⇐ (C) in Theorem 3.1 holds true: if the
residue of any logarithmic 1-form along D is a weakly holomorphic
function on D then D is a normal crossing in codimension one.

The proof consists in passing to a nearby point, where D is free.
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Characterization of normal crossing divisors

A normal crossing divisor is free and JD is a radical ideal of OD .
A partial converse is :

Theorem (E. Faber, G and M. Schulze.)

For a free divisor with smooth normalization, any of the conditions

The ideal Jh = (h′x1 , · · · , h
′
xn) ⊂ OS is a radical ideal

Any of the equivalent conditions (A), (B), (C),

The Jacobian ideal JD is radical.

imply that D is a normal crossing divisor.

Question (E. Faber) In i) or iii), can one get rid of the smoothness
hypothesis?
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Three examples.

1) The whitney umbrella W = {h = x2 − y2z = 0} satisfies (B).
Its normalization is smooth isomorphic to C2 :

OW ⊂ C{u, y} = O
W̃
, , with z = u2, x = uy

We find Ω1(logD) = O dh
h + Oω + Ody + Odz , with

ω = yzdx−xzdy−xy/2dz
h , we check that RD = O

W̃
since

yω =
x

2

dh

h
− dx , Res(2ω) = u =

√
z

By this example freeness is necessary in the last theorem.
2) Let A be a generic hyperplane arrangement. With equation∏

ℓi = 0 then we have

Ω1(logA) =
∑

O · dℓi
ℓi
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3) Let C ⊂ P2 be a nodal curve. We should check RX = O
X̃
.

Example : the cone on the cubic nodal curve.

h := y2z − x2(z + x) = 0.

OX = C[x+z , y , z ] = C[t2u, t3−tu2, u3] ⊂ O
X̃
= C[t3, t2u, tu2, u3],

with t2u = x + z , tu2 = yz
x . We find tu2 = Res(α/h),

α = −(2z + 3x)yzdx + 2xz(z + x)dy + x2ydz

Because xα = yz · dh ( mod f Ω1
C3)
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4) The cuspidal curve y2 − x3 = 0, with normalization
C{x , y}/f → C{t} given by : x = t2, y = t3.
Ω1(logD) is generated by the two forms :

ω0 =
df

f
, ω1 =

−3ydx + 2xdy

f

An easy calculation yields

yω1 = −3dx +
df

f
, hence Res(ω1) =

x

y
=

1

t
.

We check from this that RD = 1
tC{t} ⫌ O

D̃
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Going further.

Among many generalizations and applications I will only discuss
here the following :
When D does not satisfy (A), (B) or (C), how to determine
RD ⫌ OD̃ In the case of curves. A detailed answer in terms of the
semigroup of multivaluations is given by Delphine Pol.
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Semigroup of a curve.

Let (D, 0) =
⋃p

i=1Di ⊂ (S , 0) be a reduced curve, with
normalization :

OD ↪→ OD̃ ≃ C{t1} ⊕ · · · ⊕ C{tp}.

The value of g ∈ Q(OD), is the p-uple of valuations w.r. to tj ’s

val(g) = (val1(g), · · · , valp(g)) ∈ (Z ∪ {∞})p.

Let val(I) ⊂ Zp be the set of values on non zero divisors in I .

Definition

The semigroup of D is Γ = val(OD) ⊂ Np.

There is γ ∈ Np with val(CD) = (γ1, · · · , γp) +Np.
More generally each fractional ideal I ⊂ Q(OD) has a conductor

ν ∈ Zp, val(I) ⊃ ν +Np
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A symmetry result.

Theorem (Delgado)

The ring OD is Gorenstein iff the semi group Γ has the following
property:

∀v ∈ Zp, v ∈ Γ ⇐⇒ ∆(γ − v − (1, · · · , 1),OD) = ∅

For sake of simplicity we limit ourselves to th irreducible case :

∀v ∈ Z, v ∈ Γ ⇐⇒ γ − v − 1 /∈ Γ

This result extends to dual couples like JD and RD .
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Theorem (D. Pol)

Let D be a plane branch. Then the set of values of the module of
logarithmic residues is determined by JD :

v ∈ val(RD) ⇐⇒ γ − v − 1 /∈ val(JD)

Link with Kähler differentials We consider the module Ω1
C , and

its set of values, giving each dt the value 1.

Proposition (G, D.Pol)

We have: val(JC) = γ + val(Ω1
C)− 1

We use a formula by R. Piene’s formula relating these fractionnal
ideals with the ramification locus Rν of the normalization.
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Corollary (D. Pol)

v ∈ val(RD) ⇐⇒ ∆(−v,Ω1
D) = ∅

Example Let D be the curve y5 − x6.

val(Ω1
D) = val(OD) \ {0} = {5, 6, 10, 11, 12, 15, 16, 17, 18, 20, ...},

valRD = {−19,−14,−13,−9,−8,−7,−4,−3,−2,−1} ∪N.

Notice that dimRD/OD = dimOD/JD = τ the Tjurina number
and dimRD/OD̃ = τ − δ.
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We give a picture for the case of f = (x2 − y3)(x4 − y3), µ = 19,
δ = 10, τ = 17, γ = (8, 12), γJ = (12, 20).
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γ

Figure: Semigroup of JD
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val1

val2−5

−5

−10

0

Figure: Multi-values of RD
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In this way RD is related to the problem of moduli space for plane
branches with a given semi group Γ

Theorem (Hefez,Hernandez)

The set of analytic classes M of plane branches with given
topological type satisfies

M =
⋃

Ω1
D=Ω MΩ.

Each MΩ is separated and a quotient by a finite group of an affine
open space.
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Happy birthday, Tony!

Thank you for your attention
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