Solving Linear Equations

I-Chiau Huang

Academia Sinica

Jordan Types of Artinian Algebras and Geometry of Punctual Hilbert Schemes

A conference to celebrate the 80th birthday of Anthony larrobino

Nice, France

23 - 27 June 2025

- Joint work with I-Hsin Tsai, National Taiwan University.
- **Motivaition:** Our goal is to realize Grothendieck duality concretely by working on residual complexes, which is built up by certain injective modules.
- **Baer's criterion**: A module is injective if and only if certain systems of linear equations are solvable.
- **Main results:** We will construct an injective hull of the residue field of a Noetherian local ring without using Zorn's lemma.
- **Examples:** solving systems of linear equations in an Artinian Gorenstein local ring.

- 4 同 6 4 日 6 4 日 6

Let κ be a field and $A = \kappa[X]/\langle X^{n+1} \rangle = \kappa + \kappa x + \kappa x^2 + \cdots + \kappa x^n$.

• In the residue field of A, the equation

$$xT = 1$$

does not have solutions.

Identify the residue field with the module (xⁿ), the above equation is written as

which has a solution in $\langle x^{n-1}, x^n \rangle = \langle x^{n-1} \rangle$.

 The module (xⁿ⁻¹) is not "linearly closed" in the sense that some linear equations, for instance, the equation

$$xT = x^{n-1}$$

can not be solved in $\langle x^{n-1} \rangle$. But it can be solved in $\langle x^{n-2} \rangle$. For $a_0, \ldots, a_n \in \infty$, a necessary condition for the equation

$$\mathbf{x}T = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{x} + \dots + \mathbf{a}_n \mathbf{x}^n$$

to be solvable is $z_0 = 0$. If $z_0 = 0$, the equation is solvable.

소리가 소문가 소문가 소문가 ...

Let κ be a field and $A = \kappa [X]/\langle X^{n+1} \rangle = \kappa + \kappa x + \kappa x^2 + \cdots + \kappa x^n$.

• In the residue field of A, the equation

$$xT = 1$$

does not have solutions

• Identify the residue field with the module $\langle x^n \rangle$, the above equation is written as

$$xT = x^n$$

which has a solution in $\langle x^{n-1}, x^n \rangle = \langle x^{n-1} \rangle$.

$$xT = x^{n-1}$$

$$imes T = a_0 + a_1 x + \dots + a_n x^n$$

イロン 不通 と 不良 と 不良 と 一項

Let κ be a field and $A = \kappa [X]/\langle X^{n+1} \rangle = \kappa + \kappa x + \kappa x^2 + \cdots + \kappa x^n$.

• In the residue field of A, the equation

$$xT = 1$$

does not have solutions.

• Identify the residue field with the module $\langle x^n \rangle$, the above equation is written as

$$xT = x^n$$

which has a solution in $\langle x^{n-1}, x^n \rangle = \langle x^{n-1} \rangle$.

• The module $\langle x^{n-1} \rangle$ is not "linearly closed" in the sense that some linear equations, for instance, the equation

$$xT = x^{n-1}$$

can not be solved in $\langle x^{n-1} \rangle$. But it can be solved in $\langle x^{n-2} \rangle$.

$$xT = a_0 + a_1x + \dots + a_nx^n$$

Let κ be a field and $A = \kappa [X]/\langle X^{n+1} \rangle = \kappa + \kappa x + \kappa x^2 + \cdots + \kappa x^n$.

• In the residue field of A, the equation

$$xT = 1$$

does not have solutions.

• Identify the residue field with the module $\langle x^n \rangle$, the above equation is written as

$$xT = x^n$$

which has a solution in $\langle x^{n-1}, x^n \rangle = \langle x^{n-1} \rangle$.

• The module $\langle x^{n-1} \rangle$ is not "linearly closed" in the sense that some linear equations, for instance, the equation

$$xT = x^{n-1}$$

can not be solved in $\langle x^{n-1} \rangle$. But it can be solved in $\langle x^{n-2} \rangle$.

• For $a_0, \ldots, a_n \in \kappa$, a necessary condition for the equation

$$xT = a_0 + a_1x + \cdots + a_nx^n$$

to be solvable is $a_0 = 0$. If $a_0 = 0$, the equation is solvable. Let κ be a field and $A = \kappa[X]/\langle X^{n+1} \rangle = \kappa + \kappa x + \kappa x^2 + \cdots + \kappa x^n$.

• In the residue field of A, the equation

$$xT = 1$$

does not have solutions.

Identify the residue field with the module (xⁿ), the above equation is written as

$$xT = x^n$$

which has a solution in $\langle x^{n-1}, x^n \rangle = \langle x^{n-1} \rangle$.

• The module $\langle x^{n-1} \rangle$ is not "linearly closed" in the sense that some linear equations, for instance, the equation

$$xT = x^{n-1}$$

can not be solved in $\langle x^{n-1} \rangle$. But it can be solved in $\langle x^{n-2} \rangle$.

• For $a_0, \ldots, a_n \in \kappa$, a necessary condition for the equation

$$xT = a_0 + a_1x + \dots + a_nx^n$$

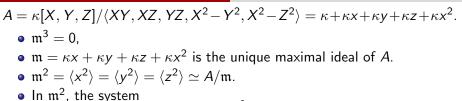
to be solvable is a₀ = 0. If a₀ = 0, the equation is solvable.
A is an injective hull of its residue field.

$A = \kappa[X, Y, Z] / \langle XY, XZ, YZ, X^2 - Y^2, X^2 - Z^2 \rangle = \kappa + \kappa x + \kappa y + \kappa z + \kappa x^2.$	
• $m^3 = 0$,	
• $\mathfrak{m} = \kappa x + \kappa y + \kappa z + \kappa x^2$ is the unique maximal ideal of A.	

• $\mathfrak{m}^2 = \langle x^2 \rangle = \langle y^2 \rangle = \langle z^2 \rangle \simeq A/\mathfrak{m}.$

$$\begin{aligned} xT &= ax^2 \quad (a \in \kappa), \\ yT &= by^2 \quad (b \in \kappa), \\ zT &= cz^2 \quad (c \in \kappa) \end{aligned}$$

$$\begin{aligned} xT &= a_{11}x + a_{12}y + a_{13}z + a_{14}x^2 \quad (a_{1i} \in \kappa), \\ yT &= b_{11}x + b_{12}y + b_{13}z + b_{14}y^2 \quad (b_{1i} \in \kappa), \\ zT &= c_{11}x + c_{12}y + c_{13}z + c_{14}z^2 \quad (c_{1i} \in \kappa) \end{aligned}$$

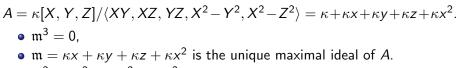


$$\begin{array}{ll} xT = & ax^2 & (a \in \kappa), \\ yT = & by^2 & (b \in \kappa), \\ zT = & cz^2 & (c \in \kappa) \end{array}$$

of equations has a solution ax + by + cz in \mathfrak{m} .

$$\begin{array}{rcl} xT &=& a_{11}x + a_{12}y + a_{13}z + a_{14}x^2 & (a_{1i} \in \kappa), \\ yT &=& b_{11}x + b_{12}y + b_{13}z + b_{14}y^2 & (b_{1i} \in \kappa), \\ zT &=& c_{11}x + c_{12}y + c_{13}z + c_{14}z^2 & (c_{1i} \in \kappa) \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <



- $\mathfrak{m}^2 = \langle x^2 \rangle = \langle y^2 \rangle = \langle z^2 \rangle \simeq A/\mathfrak{m}.$
- In \mathfrak{m}^2 , the system

$$\begin{aligned} xT &= ax^2 \quad (a \in \kappa), \\ yT &= by^2 \quad (b \in \kappa), \\ zT &= cz^2 \quad (c \in \kappa) \end{aligned}$$

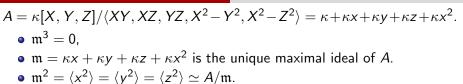
of equations has a solution ax + by + cz in \mathfrak{m} .

In m, the consistent system

$$\begin{array}{lll} xT = & a_{11}x + a_{12}y + a_{13}z + a_{14}x^2 & (a_{1i} \in \kappa), \\ yT = & b_{11}x + b_{12}y + b_{13}z + b_{14}y^2 & (b_{1i} \in \kappa), \\ zT = & c_{11}x + c_{12}y + c_{13}z + c_{14}z^2 & (c_{1i} \in \kappa) \end{array}$$

of equations has a solution $a_{11} + a_{14}x + b_{14}y + c_{14}z$ in A.

・ロト ・聞ト ・ヨト ・ヨト



• In \mathfrak{m}^2 , the system

$$\begin{array}{lll} xT = & ax^2 & (a \in \kappa), \\ yT = & by^2 & (b \in \kappa), \\ zT = & cz^2 & (c \in \kappa) \end{array}$$

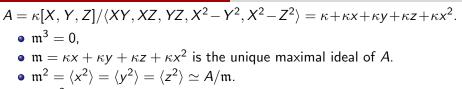
of equations has a solution ax + by + cz in \mathfrak{m} .

In m, the consistent system

$$\begin{aligned} xT &= a_{11}x + a_{12}y + a_{13}z + a_{14}x^2 \quad (a_{1i} \in \kappa), \\ yT &= b_{11}x + b_{12}y + b_{13}z + b_{14}y^2 \quad (b_{1i} \in \kappa), \\ zT &= c_{11}x + c_{12}y + c_{13}z + c_{14}z^2 \quad (c_{1i} \in \kappa) \end{aligned}$$

of equations has a solution $a_{11} + a_{14}x + b_{14}y + c_{14}z$ in A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



• In \mathfrak{m}^2 , the system

$$\begin{aligned} xT &= ax^2 \quad (a \in \kappa), \\ yT &= by^2 \quad (b \in \kappa), \\ zT &= cz^2 \quad (c \in \kappa) \end{aligned}$$

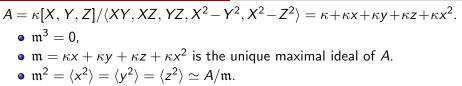
of equations has a solution ax + by + cz in \mathfrak{m} .

In m, the consistent system

$$\begin{aligned} xT &= a_{11}x + a_{12}y + a_{13}z + a_{14}x^2 \quad (a_{1i} \in \kappa), \\ yT &= b_{11}x + b_{12}y + b_{13}z + b_{14}y^2 \quad (b_{1i} \in \kappa), \\ zT &= c_{11}x + c_{12}y + c_{13}z + c_{14}z^2 \quad (c_{1i} \in \kappa) \end{aligned}$$

of equations has a solution $a_{11} + a_{14}x + b_{14}y + c_{14}z$ in A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



• In \mathfrak{m}^2 , the system

$$\begin{aligned} xT &= ax^2 \quad (a \in \kappa), \\ yT &= by^2 \quad (b \in \kappa), \\ zT &= cz^2 \quad (c \in \kappa) \end{aligned}$$

of equations has a solution ax + by + cz in \mathfrak{m} .

In m, the consistent system

$$\begin{aligned} xT &= a_{11}x + a_{12}y + a_{13}z + a_{14}x^2 \quad (a_{1i} \in \kappa), \\ yT &= b_{11}x + b_{12}y + b_{13}z + b_{14}y^2 \quad (b_{1i} \in \kappa), \\ zT &= c_{11}x + c_{12}y + c_{13}z + c_{14}z^2 \quad (c_{1i} \in \kappa) \end{aligned}$$

of equations has a solution $a_{11} + a_{14}x + b_{14}y + c_{14}z$ in A.

• **Exercise**: Show that every consistent system of equations in A can be solved. イロト 不得下 イヨト イヨト

• Let A be a commutative ring with an identity element. The structure of an A-module M can be understood through system

$$\{a_{i1}T_1+\cdots+a_{i\ell}T_\ell=\alpha_i\}_{i\in\Gamma}$$

of A-linear equations together with its solutions, where T_1, T_2, \ldots, T_ℓ are unknowns, $a_{ij} \in A$, $\alpha_i \in M$ and Γ is an index set.

A necessary condition for the above system having a solution is

 $b_1 a_{i_1 j} + \dots + b_\ell a_{i_\ell j} = 0$ for $1 \le j \le \ell \implies b_1 \alpha_{i_1} + \dots + b_\ell \alpha_{i_\ell} = 0$,

where $i_j \in \Gamma$ and $b_i \in A$. Such a condition on the module M is called a *constraint* from the underlying ring A.

• A system of A-linear equations in M is called *consistent*, if it satisfies all constraints from A. A consistent system of linear equations is simply called a *consistent system*.

• Let A be a commutative ring with an identity element. The structure of an A-module M can be understood through system

$$\{a_{i1}T_1+\cdots+a_{i\ell}T_\ell=\alpha_i\}_{i\in\Gamma}$$

of A-linear equations together with its solutions, where T_1, T_2, \ldots, T_ℓ are unknowns, $a_{ij} \in A$, $\alpha_i \in M$ and Γ is an index set.

• A necessary condition for the above system having a solution is

$$b_1 a_{i_1 j} + \dots + b_\ell a_{i_\ell j} = 0$$
 for $1 \le j \le \ell \implies b_1 \alpha_{i_1} + \dots + b_\ell \alpha_{i_\ell} = 0$,

where $i_j \in \Gamma$ and $b_i \in A$. Such a condition on the module M is called a *constraint* from the underlying ring A.

• A system of A-linear equations in M is called *consistent*, if it satisfies all constraints from A. A consistent system of linear equations is simply called a *consistent system*.

イロト イポト イヨト イヨト

• Let A be a commutative ring with an identity element. The structure of an A-module M can be understood through system

$$\{a_{i1}T_1+\cdots+a_{i\ell}T_\ell=\alpha_i\}_{i\in\Gamma}$$

of A-linear equations together with its solutions, where T_1, T_2, \ldots, T_ℓ are unknowns, $a_{ij} \in A$, $\alpha_i \in M$ and Γ is an index set.

• A necessary condition for the above system having a solution is

$$b_1 a_{i_1 j} + \dots + b_\ell a_{i_\ell j} = 0$$
 for $1 \le j \le \ell \implies b_1 \alpha_{i_1} + \dots + b_\ell \alpha_{i_\ell} = 0$,

where $i_j \in \Gamma$ and $b_i \in A$. Such a condition on the module M is called a *constraint* from the underlying ring A.

• A system of A-linear equations in M is called *consistent*, if it satisfies all constraints from A. A consistent system of linear equations is simply called a *consistent system*.

イロト イポト イヨト イヨト

$$\{a_i T = \alpha_i\}_{i \in \Gamma}$$

of equations in T is consistent if and only if $\alpha_i = f(a_i)$ for some A-linear map $f : I \to M$, where I is the ideal generated by a_i .

- Referring to an ideal I of A, we call such a consistent system an I-system in M and identify it with an element in Hom_A(I, M).
- A solution to an *I*-system *f* in *M* is an element $\alpha \in M$ such that $f(a) = a\alpha$ for all $a \in I$, in other words, *f* lifts to *A*.

Baer's criterion

$$\{a_i T = \alpha_i\}_{i \in \Gamma}$$

of equations in T is consistent if and only if $\alpha_i = f(a_i)$ for some A-linear map $f : I \to M$, where I is the ideal generated by a_i .

- Referring to an ideal I of A, we call such a consistent system an I-system in M and identify it with an element in Hom_A(I, M).
- A solution to an *I*-system *f* in *M* is an element $\alpha \in M$ such that $f(a) = a\alpha$ for all $a \in I$, in other words, *f* lifts to *A*.

Baer's criterion

$$\{a_i T = \alpha_i\}_{i \in \Gamma}$$

of equations in T is consistent if and only if $\alpha_i = f(a_i)$ for some A-linear map $f : I \to M$, where I is the ideal generated by a_i .

- Referring to an ideal I of A, we call such a consistent system an I-system in M and identify it with an element in Hom_A(I, M).
- A solution to an *I*-system *f* in *M* is an element $\alpha \in M$ such that $f(a) = a\alpha$ for all $a \in I$, in other words, *f* lifts to *A*.

Baer's criterion

$$\{a_i T = \alpha_i\}_{i \in \Gamma}$$

of equations in T is consistent if and only if $\alpha_i = f(a_i)$ for some A-linear map $f : I \to M$, where I is the ideal generated by a_i .

- Referring to an ideal I of A, we call such a consistent system an I-system in M and identify it with an element in Hom_A(I, M).
- A solution to an *I*-system *f* in *M* is an element $\alpha \in M$ such that $f(a) = a\alpha$ for all $a \in I$, in other words, *f* lifts to *A*.

Baer's criterion

fields	modules	modules
	(our terminology)	(existing terminology)
algebraic equation	linear equation	linear equation
algebraic extension	linear extension	essential extension
algebraically closed field	linearly closed module	injective module
algebraic closure	linear closure	injective hull

Linear extension

An A-module N containing M is called a *linear extension* of M, if every element of N is a solution to a non-zero I-system in M. For a linear extension N of M, we also say that N is linear over M.

Linear closure

For an ideal I of A, an A-module M is called I-closed if every I-system in M has a solution. The module M is called *linearly closed* if it is I-closed for any ideal I of A. A linear extension of M is called a *linear closure* of M if the extension is linearly closed.

fields	modules	modules
	(our terminology)	(existing terminology)
algebraic equation	linear equation	linear equation
algebraic extension	linear extension	essential extension
algebraically closed field	linearly closed module	injective module
algebraic closure	linear closure	injective hull

Linear extension

An A-module N containing M is called a *linear extension* of M, if every element of N is a solution to a non-zero I-system in M. For a linear extension N of M, we also say that N is linear over M.

Linear closure

For an ideal I of A, an A-module M is called I-closed if every I-system in M has a solution. The module M is called *linearly closed* if it is I-closed for any ideal I of A. A linear extension of M is called a *linear closure* of M if the extension is linearly closed.

Initial condition

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} . We say that an A-module M satisfies the initial condition if every \mathfrak{m} -system in $\mathfrak{m}M$ has a solution in M.

• Example: The residue field of A satisfies the initial condition.

Solution module up to the first order

Let M be an A-module satisfying the initial condition. There exist an A-module $E_1(M)$ and an exact sequence

 $0 \to M \to E_1(M) \to \operatorname{Hom}_{\mathcal{A}}(\mathfrak{m}, M) / \operatorname{Hom}_{\mathcal{A}}(\mathfrak{m}, \mathfrak{m}M) \to 0.$

- Every \mathfrak{m} -system in M has a solution in $E_1(M)$.
- $E_1(M)$ is a linear extension of M.
- If $\omega \in E_1(M)$ is a solution to an m-system in mM, then $\omega \in M$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Solution module

- If M satisfies the initial condition, so does $E_1(M)$.
- Starting from $E_0(M) := M$, we define

$$E_i(M) := E_1(E_{i-1}(M))$$

for $i \ge 1$ and call $E_i(M)$ the solution module of M up to the *i*-th order.

• We obtain a filtration

$$0 \subset E_0(M) \subset E_1(M) \subset E_2(M) \subset \cdots$$

Solution module

The direct limit E(M) of $\{E_i(M)\}_{i\geq 0}$ is called the solution module of M.

Theorem

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} , and let M be an A-module satisfying the initial condition. Then E(M) is minimal among \mathfrak{m} -closed modules containing M.

Module with zero-dimensional support

An A-module N has zero-dimensional support if every element of N is annihilated by some power of \mathfrak{m} .

• The residue field of A has zero-dimensional support.

Theorem

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} , and let M be an A-module that satisfies the initial condition. If M has zero-dimensional support, then E(M) is a maximal linear extension of M.

Theorem

Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} , and let M be an A-module that satisfies the initial condition. If M has zero-dimensional support, then E(M) is a linear closure of M.

Corollary

Let M be an A-module with zero-dimensional support. If M is m-closed, it is linearly closed.

THANK YOU!

э

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・