Families of symmetric and skew-symmetric
matrices and vector bundles

Emilia Mezzetti

UNIVERSITA
DEGLI STUDI
DITRIESTE

Jordan Types of Artinian Algebras and Geometry of Punctual
Hilbert Schemes - A conference to celebrate the 80th birthday
of Anthony larrobino



Linear systems of matrices of constant rank
V' C M, p(K): vector space of a x b matrices over a field K
Definition
V is a space of matrices of constant rank r if all its nonzero
elements have the same rank r.

Main questions:
For fixed values of the parameters a, b, r and field K

1. Find max dim V;
2. Construct explicit examples;

3. Classify spaces V.

@ Classical work of Kronecker and Weierstrass; also Gantmacher.

@ For K algebraically closed, interesting relation with vector
bundles on projective spaces and their invariants, first studied
in [J. Sylvester 1986], [Westwick 1987,1990,1996],
[Eisenbud-Harris 1988].



Relation with vector bundles

If dim V' = n+1, we interpret V as an a x b matrix M whose entries
are linear forms in n+ 1 variables: M defines a morphism

O[Pn(—l)@b £> O]%Bna

whose kernel and cokernel are vector bundles on P, K of rank b—r,
E of rank a —r:

0 — K — Opn(—1)20 M, O — E— 0,

Examples (Constant rank 2)
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Bounds on dimension

From now on K = K and char(K) = 0.

Notation
{(a, b; r) := max{dim V | V C M, (K) is of constant rank r}.
[Westwick 1987]: from a computation of invariants and examples
b—r+1</{(ab;r)y<a+b—-2r+1, for2<r<a<hb.

Westwick's bounds are in general not sharp, and the problem is still
open.

Remark

Ifa=b, a—r+1</{(a,ar)<2(a—r)+1

If moreover r =a—2, 3</{(a,ar)<b5.




Square (skew-)symmetric matrices

What if the matrices are square and (skew)-symmetric?
Dualizing
0— K — Opn(~1)%* Xy 082 — E— 0,

and twisting by —1 we get:

0 — E*(—1) — Opn(—1)®2 M 082 K*(~1) — 0.

From M = +M we obtain an isomorphism K ~ E*(—1), and
C1(E) = 5

In particular, if the (constant) corank is 2, then K ~ E(—3).



Skew-symmetric matrices: results

Skew-symmetric matrices

e [Manivel - M. 2005]: classification of the spaces of
skew-symmetric matrices of order 6 and constant rank 4 up to
the action of the projective linear group PGLg, and
lskew(6,6;4) = 3.

e [Fania - M. 2011]: classification of all the spaces of dimension
2 up to SL(a)-actions; /e, (8,8;6) = 3 and characterization
of the corresponding rank two bundles E on P2.

e [Boralevi - Faenzi - M. 2013]: existence of spaces of
dimension 4 of skew-symmetric matrices of constant corank 2
of order 10 and 14; lsken (10,10; 8) = loken (14,14;12) = 4



Symmetric matrices

Symmetric matrices = linear systems of quadrics
e [llic - Landsberg 1999]:

3 if riseven

loym(r +2,r+2,r) = { 1 if ris odd.

e [Boralevi-M 2022]:
explicit expression for the dimension of every GL,1-orbit of
pencils of symmetric matrices of order n + 1 of constant
non-maximal rank



Skew-symmetric matrices as tensors

@ Skew-symmetric matrices of order n+ 1 can be interpreted as
skew-symmetric tensors in A2K"*! (note change in notation)
@ Matrices of rank 2 correspond to the Grassmannian G(1, n) of

lines in P"
@ There is a natural filtration:
G(1,n) C 02(G(1,n)) C 03(G(1,n)) C ... C P(A’K"F1)

corresponding to skew-symmetric matrices of rank
{rk=2}c {rk<4}c{rk<6}c...c{rk<n+1}.
The projectivization of a linear space of skew-symmetric matrices of

order n+ 1 and constant rank 2k (necessarily even) is a projective
space contained in the stratum

o (G(1, ) \ o%_1(G(1, n)).



n="5: 6 x 6 skew-symmetric matrices of constant rank 4

G(1,5) C 02(G(1,5)) € P(A%K®) = p1*
In the dual space P'* there is the isomorphic filtration:

G(3,5) C 02(G(3,5)) ~ G(1,5) c P

The dual variety G(1,5) parametrizing hyperplanes tangent to G(1, 5)
is the pfaffian cubic hypersurface of 6 x 6 skew-symmetric matrices
of rank < 6.

G(3,5)(~ G(1,5)) is the singular locus of G(1,5): it parameterizes
hyperplanes tangent to G(1,5) at all points representing the lines
of a P3.

We focus on the stratum G(1,5) \ G(3,5).



Projective lines in G(1,5)\ G(3,5) and vector bundles

[Manivel - M.] There are two orbits of projective lines (i.e. pencils of
matrices), under the action of PGLg by congruence, corresponding
to the two globally generated rank two bundles on P! with ¢; = 2.

OPI(].)@Z OPI ) OPI (2)
x y : x y -
X y . X y
“x . “x : .
-y : -y —x
_x Doy
—y .
“general lines” “special lines”

The space of these lines is irreducible of dim 22, with an open PGLg-
orbit of general lines and a codim 1 orbit of special lines.



Planes in G(1,5) \ G(1,5) and vector bundles

There are four orbits all of dimension 26 of projective planes cor-
responding to rk 2 globally generated bundles on P? with ¢ = 2

defining an embedding in G(1,5)

O]pz & Op2(2), =0

X y|-
X y z|-
—x . z -
-x -y -z - |-
-y -z . R
OP2(1)821 Cy = 1
. x y
—X . z

-y -z
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Restricted null correlation
bundle, ¢ =2

Steiner bundle, co = 3
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Quadratic systems and motivation: congruences of lines
There are no P3s inside G(1,5) \ G(3,5).

In [Boralevi-Fania-M. 2021] we focus our attention on smooth quadric
surfaces. WHY?

A congruence of lines in P" is a flat family B of lines in P” obtained
as desingularization of a (n — 1)-dimensional subvariety B’ of the
Grassmannian G(1, n). Consider the incidence correspondence with
the natural projection:

AC BxP" - L2ypr

@ Order of the congruence is the degree of the map p: number
of lines through a general point;

@ P € P"is a fundamental point if P belongs to infinitely many
lines of B: ® fundamental locus;

@ the schematic image of the ramification divisor of p is F the
focal scheme.



Congruences of lines of order 1

Q dCF,
@ if | € B, then either | C F or | contains n — 1 focal points
(counted with multiplicity),
@ B of order > 0: & = F (and codim F > 1) if and only if
order B = 1.
Congruences of lines of order 1, and in particular linear congruences
of lines, have been studied by Arrondo, Bertolini, Turrini, Ran, De
Poi, Peskine,...
Interesting applications/connections to
@ Integrable system (Agofonov - Ferapontov)
@ Degree of irrationality of projective varieties (Bastianelli -
Cortini - De Poi, Bastianelli - De Poi - Ein - Lazarsfeld -
Ullery)

© Zak's conjecture on k-normality.



Linear congruences

Linear congruence: B = G(1, n)NH1NHxN...NH,—1 = G(1, n)NA,
H; hyperplanes in P(A2K"*1) ~~ they correspond to points in the
dual space P(A?K"*1), generating a (n — 2)-space A.

General linear congruences

@ In P3: lines meeting two fixed lines <= pencil of
hyperplanes in P° = P(A?K®) <= line A in P5 with two
points of intersection with G(1,3).

@ In P*: trisecant lines of a projected Veronese surface <=
plane A in P9 disjoint from G(1, 4).

© In P°: 4-secant lines of a degree 7 scroll X over a smooth
cubic surface S: the Palatini scroll, which is the focal scheme
<= 3-space A in P, intersecting G(1,5) along S, disjoint
from G(3,5).



Special linear congruences

Special positions:
e in P* classified by Castelnuovo (1891);
e in P° partial results in [De Poi - M., Siena].

To be understood: the geometry of the special cases when A N
G(1,5) splits as (plane) U (quadric).

Planes are classified; what about quadrics?



Quadratic systems of skew-symmetric matrices

Q a smooth quadric surface, isomorphic to P! x P! and embedded
into P2 through the Segre map. Any line bundle over Q is of the
form Ogq(a, b) = 75(Op1(a)) @ 75(Op1(b)), where the 7;'s are the
projections over P!

The existence of a smooth quadric surface @ ¢ G(1,5) \ G(3,5)
implies the existence of an exact sequence of vector bundles on Q:

0— E(=3,-3) > Og(-1,-1)** - 0F° - E =0 ()

E is a rank 2 globally generated vector bundle on @, whose Chern
classes satisfy c1(E) = (2,2) and 0 < o»(E) < 6.



Rank 2 globally generated vector bundles on @ with
G = (2, 2)

Globally generated bundles on a smooth quadric surface are classified
in [Ballico-Huh-Malaspina 2015].

Decomposable = direct sum of two line bundles
E=0q(a,b) ®0g(2—a,2—b), 0<ab<2
(DEC1) E =0 ®0¢(2,2), &2(E)=0;
(DEC2) E = 0g(1,1)%2, oo(E) = 2;
(DEC3) E = 0¢(2,1) ® 0g(0,1), 2(E) = 2;
(DEC4) E = 0¢(2,0) ® 0q(0,2), c(E) = 4.

Indecomposable gg bundles with ¢; = (2,2) exist if and only if
o =3,4,5,6,8.
Not all of them fit in an exact sequence (*).



Main result in [Boralevi-Fania-M. 2021]

G(1,5) C P the cubic Pfaffian hypersurface parametrizing 6 x 6
skew-symmetric matrices of rank at most 4

Theorem (Existence Theorem)

There exists a smooth quadric surface Q C G(1,5), not
intersecting the Grassmannian G(3,5), giving rise to an exact
sequence

0— E(=3,-3) = Og(-1,-1)% - 0F° - E -0,  (x)

if and only if the vector bundle E is either one of the
decomposable bundles (DECi) or one (INDj) of the following list.

v




Indecomposable rank 2 vector bundles on @

(IND1) 0 = Og — Og(1,1) ® O@(1,0) ® 0@(0,1) - E =0
a(E)=3;

(IND2) 0 — Og(—1,-1) = 05% ® Og(1,1) — E =0,
C2(E) =4

(IND3) Thereisases 0 — Oq(1,0) - E — I7(1,2) =0,
Z is a 0-dim scheme of deg 2. E is stable, ca(E) = 4;

(IND4) Thereisases0— Oqg — E —7Z7(2,2) — 0,
Z is a 0-dim scheme of deg 5. E is stable, ca(E) = 5;

(IND5) Thereisases0— Oqg — E —7Z7(2,2) — 0,
Z is a 0-dim scheme of deg 6. E is stable, ca(E) = 6.



Main technique: building blocks and projection

@ Detect some building blocks of constant rank two
corresponding to bundles with ¢ = (1,1);

@ construct matrices of constant rank 4 and any size, direct sum
of building blocks;

o if the obtained matrices have bigger size, suitably project to a
6 x 6 matrix while maintaining constant rank.

In terms of vector bundles, try to insert a candidate bundle E in an
exact sequence of the form:

(tk F—2)

0—>C’)g —+F—=E—0

where F is a direct sum of two vector bundles with ¢; = (1,1), and
C2(F) = C2(E).



The globally generated bundles of any rank on @ with ¢; = (1,1)
are:

(i) Oq(1,1);
(i) Og(1,0) @ Oq(0,1);
(i) TP*(=1)|qi
(iv) Ap = m5(TP?(—1)), where mp : Q — P2 is the projection of

center P ¢ Q.

Each case gives a building block to construct the required matrices.



An example: building block for the decomposable bundle Og(1,0) & Og(0,1)

It appears in an exact sequence

0= Og(=2,—1) B Og(—1,-2) = 40g(~1) L5 405 — Oo(1,0) & Og(0,1) — 0 :

(i) compose the short exact sequence
0— 0q(—1,0) = 20g — Og(1,0) — 0

with itself tensored with Oq(—1):

0g(=2,-1)—20¢(-1) 204 00(1,0).

~

Oq(-1,0)

(i) take the direct sum of the sequence obtained with the symmetric one with
respect to the rulings.
X Yy
A corresponding building block is, for instance M = x _z Z ] : vanish-
ing of Pfaff(M) defines a quadric surface contained in G(1,3) as a linear section. It
represents a linear congruence of lines in P3, formed by the lines meeting two skew lines.



Construction of bundles with ¢, = 4

A quotient E of the form

0= 0 = 0g(1,0)% ® 0g(0,1)% — E — 0

has c(E) = 4.
There are three bundles E to be constructed: (DEC4), (IND2)
(IND3).

The three cases have different behaviours when restricted to the two
rulings of the quadric Q: the decomposable case (DEC4) restricts as
Op1 @ Op1(2) on both rulings, (IND2) restricts as Op1(1) @ Op1(1)
on both rulings, and (IND3) restricts as Op1 & Op1(2) on one ruling
and as Op1(1) @ Op1(1) on the other one.

We get the three cases for different choices of the centre of projec-
tion.



Details on the projection
The projection
mo P =P(K"™) - P"! = P(K")
from a point O induces another projection
Tao : P(NPK™) — P(A2K")

whose centre is Ao C G(1, n): union of the lines through O.

Consider S, a surface contained in ¢,(G(1, n)) \ o0,-1(G(1, n)),
points in S are of the form w =[vi Awy + -+ + v, A wy]:

vi, w; are 2r linearly independent vectors; the corresponding points
generate a subspace L, C P” of dimension 2r — 1.

The matrices of mp,(S) have constant rank 2r if and only if the

point O does not belong to the union of the spaces L, as w varies
in S.



The bundles with ¢, = 4

We have to choose a line L C P, centre of projection.

F = 0g(1,0)%2 & 0g(0,1)%2 defines a map v : @ — G(3,7):
each direct summand defines 7; : @ — P!, identify the codomains
with general lines /; C P’, then ¢ maps a point P € Q to the
3-space generated by the images m;(P).

We get different bundles E according to the position of L with re-
spect to the 5-spaces S;, dual of the lines ;.

The most special situation is when L meets all the S;: E splits and
we get case (DEC4).

If L meets two of the S; E has different splitting type on the rulings
of @, we get case (IND3).

The general case (IND2) is obtained when L is disjoint from all the
spaces S;.

For other positions of L the rank does not remain constant by pro-
jecting.



Application: a table

Assume that Aﬂ@(lj) =NuUQ, N a plane, @ a smooth quadric,
with T, @ of constant rank 4.

I corresponds to a bundle F, @ corresponds to a bundle E. The
previous results give the existence of the following:

[EonQ | 2(E) [ F on P? | c2(F) |
00(2,1)® 0q(0,1) | 2 Steiner 3
00(2,0)® 00(0,2) | 4 Op2(1)#2 1
(IND1) 3 Null corr. of P? restricted to P? | 2
(IND2) 4 Op2(1)#2 1
(IND3) 4 Op2(1)#2 1
(IND4) 5 Opz ® Op2(2) 0

The focal locus splits in two components, of degrees 8 — c;(E) and
4 — ¢»(F), whose union has degree 7, so c2(E) + c2( F) = 5.
In the other examples we found that (@) c G(1,5).



Thank you for your attention ... and
congratulations to Tony!



