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Salute

First, congratulations to Tony with his 80 years.

You have been a prominant mathematician of the
mathematical community, starting with works on Hilbert
schemes at MIT and you have many important publications in
good journals, starting with :

“Reducibility of the Families of 0-Dimensional Schemes on a
Variety..” Inventiones mathematicae 15 (1971/72): 72-77 ,
and
“Punctial Hilbert schemes” Bull. Amer. Math. Soc. Vol. 78,
No 5, Sept. 1972

Even though we have not published papers together, we have
shared common interests in Hilbert schemes.
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Your Springer Lecture Note with Kanev (SLN 1721) has been
an inspiration for me. When I realized that the parameter
scheme PGor(h) you studied had to be smooth for Artinian
quotients of a 3-dim. poly. ring; it resulted in a paper:
[PGor98] The smoothness and the dimension of PGor(h) and
of other strata of punctual Hilb. scheme J. Algebra, 200(1998)
In 2001 [in Journal of Algebra 241, “Hilbert functions and
Level algebras”], you and Young-Hyun Cho initiated the study
of (relatively) compressed quotients C of a proper quotient A
of a polynomial ring; these are the C whose length is maximal
among quotients of fixed “permissible” socle type t(q). You
two gave examples of A where this maximal length is not the
a priori bound hI

s̄(p) computed from the socle type and the
Hilbert function a(p) of A. A few years later, you and others
gave additional examples. In my talk I will sort of generalize
your examples looking at quotients of a “product ring” A.
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Another inspiration is your important paper from 1984 in
Transactions AMS, generalizing cowork with J. Emsalem
[Iar84]: Compressed algebras: Artin algebras having given
socle degrees and maximal length. Trans. AMS 285(1984)

Steve Kleiman and I have for several years worked together, at
your suggestion and encouragement, on problems naturally
arising from your and others work in
[KK25]: Kleiman, Kleppe. Macaulay Duality and Its
Geometry. In: Albano, A., et al. Perspectives on Four
Decades of Algebraic Geometry, Volume 1. Progress in
Mathematics, vol 351. Birkhäuser, Cham. (2025)

I’ll first recall some results from [KK25].
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Macaulay duality

Now k is a Noetherian ring. Given any k-module C , define
its k-dual by

C∗ := Homk(C , k) .

A is any fin.gen. graded k-algebra (poss. non-standard) with
Ap locally free of rank a(p), a(0) = 1, a(p) = 0 for p < 0.

Set (A†)q := (A−q)∗, A† :=
⊕

q(A†)q, the graded dual of A.
(A†)q is locally free of rank a(−q) =: a∗(q).

Let FA (resp.GA):= the cat. of filtered (resp. graded)
A-modules. Call an A-module C k-Artinian if C is locally free
of finite rank over k. Let AFA ⊂ FA, AGA ⊂ GA and
AMA ⊂ MA (:= cat. of A-modules) be full subcat. of such C .
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Set-up of apolarity
For A-submodules I of A, and D of A†, let

Ann(D) := (0 :A D) = {ψ ∈ A | ψ · f = 0 for all f ∈ D }.

(0 :A† I) := { f ∈ A† | ψ · f = 0 for all ψ ∈ I }.

Example 1 Let A = P = k[x , y , z ] and A† = k[x−1, y−1, z−1],
Note that multiplication by x, y or z in A† correspond to
applying the partiel derivatives ∂/∂X , ∂/∂Y , ∂/∂Z without
coefficient onto k[X ,Y ,Z ], X := x−1,Y := y−1,Z := z−1

Let f = x−1y−2z−2. Then the deg. of f is deg(f ) = −5 and

xf = y−2z−2 , x2f = 0 , yf = x−1y−1z−2 , y3f = 0 , etc

Thus Ann(f ) = (x2, y3, z3) , and

C := R/Ann(f ) has Hilbert function hC = (1, 3, 5, 5, 3, 1).
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Denote by ΨA (resp. ∆A† ) the set of A-submodules I ⊂ A
(resp. D ⊂ A†) with A/I ∈ AMA (resp. D ∈ AMA and with
A†/D k-flat).
Let h∗(q) := h(−q). Denote by FΨh

A ⊂ ΨA the subset of all I
with A/I ∈ AFh

A, and by F∆h∗

A† ⊂ ∆A† the subset of all D
with D ∈ AFh∗

A and with G•(A†/D) k-flat (so A†/D is k-flat)
Denote by HΨh

A ⊂ FΨh
A and H∆h∗

A† ⊂ F∆h∗

A† the subset of
homogeneous I and D.
If K is a k-algebra and AK := A ⊗k K then

HΨh
AK

, FΨh
AK

, H∆h∗

A†
K

, F∆h∗

A†
K

are as above with AK for A. These definitions extend to
noetherian schemes T/Spec(k), and by [KK25,(6.2)]:

Theorem (Thm1: Representability)

These definitions give functors in T which are representable by
subschemes, say HΨh

A, FΨh
A, and H∆h∗

A† , F∆h∗

A† of a certain
Quot-scheme.
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Theorem (Thm2: Macaulay Duality)

Keep the setup above .
(1) Then I 7→ (0 :A† I) gives a bijection ΨA ∼= ∆A† , with inverse
D 7→ (0 :A D). Also, (0 :A† I) = (A/I)∗ and A/(0 :A D) = D∗.
Further, if I and D correspond, then D is a dualizing (or canonical)
module for AMA/I ;

(2) The bijection in (1) induces a second bijection, FΨh
A

∼= F∆h∗

A†

which restricts to a third, HΨh
A

∼= H∆h∗

A† . These two bijections
commute with taking associated graded modules.
Thus, Macaulay Duality gives canonical isomorphisms

FΨh
A = F∆h∗

A† and HΨh
A = H∆h∗

A†

Proof See [KK25, (3.5)]
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Let h, t : Z → Z be non-negative finite functions, h, t ̸= 0. Set

s := s(h) := sup{ n | h(n) ̸= 0 } .

Let C ∈ AFh
A. Then s is the socle degree of C , and

Definition 1 The k-socle of C and its induced filtration are:

Sock(C) := HomA(k,C) = { c ∈ C | (F 1A) · c = 0 }
F n(Sock(C)) := F nHomA(k, C) for all n.

Lemma (Lem1: Socle)

In FA, there’s a canonical isomorphism: Sock(C) = (C∗ ⊗A k)∗.

Proof [Iar84, Lem. 2.1] for k a field, or [KK25,(4.3)] which yields

HomA(k, C) = HomA(C∗, k∗) = (C∗ ⊗A k)∗ in FA.
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Thus if C∗ ⊗A k is k-Artinian, then so is Sock(C), and
their Hilbert functions, say t∗ and t, satisfy t∗(p) = t(−p).
t is called the k-socle type of C and t∗ the generator type of C∗.

Let s̄ := inf{ n | t(n) ̸= 0 } and let

gs̄(p) =
∑s

q=s̄ t(q) a(q − p) and hI
s̄(p) = min{ gs̄(p), a(p) }.

(We define gm and hI
m more generally below.)

DEF.2 With C of soc.deg. s, set D := C∗ and

∆mD := A(⊕s
j=mD−j

)
⊂ D

Fix hm. If ∆mD ∈ H∆h∗
m

D for all m, denote by HΛ{hm}
A the set of

corresponding C . It extends to a representable functor. Let

gm(p) :=
∑s

q=m t(q) a(q − p), (1)
hI

m(p) := min{ gm(p), a(p) }. (2)
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Remark 1 (i) If t∗ is the generator type of C∗, there’s a map

N := ⊕q∈ZA(q)⊕t(q) ↠ C∗ .

So gs̄(p) is the rank of N−p. So h(p) ≤ hI
s̄(p) as rank C∗

−p ≤ a(p)

(ii) Also g0(p) = gs̄(p) for p ≥ 0 as gm(p) = rank ⊕s
q=mA(q)⊕t(q)

−p

(iii) As ∆s̄C∗ = C∗, hI
s̄ is the Hilbert function of a C ∈ HΛ{hI

m}
A

Proposition (Prop1: Maximality of hI
m, [KK25, (8.2) )

Fix C ∈ HΛ{hm}
A of k-socle type t. Then hm(p) ≤ hI

m(p) ∀ m, p.

Definition 3 We say C ∈ HΛ{hm}
A of k-socle type t is I-compressed

if hm = hI
m for any m. Note the Hilb. funct. of (∆mC∗)∗ = hm.

Remark 2. C ∈ HΨh
A of socle type t is compressed iff h = hI

s̄ by
[Iar84]
For the latter Def. and Rem. to hold, we restrict to permissible t:
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Permissible socle types Let

vm := inf{ p | a(p) > gm(p) }

and define b1 := b1(A) by

b1 := v0 if a(v0 − 1) < g0(v0 − 1), and
b1 := v0 − 1 if a(v0 − 1) = g0(v0 − 1)

Then call t permissible (for A), see [KK25,(8.4)(2)], if

s̄ ≥ b1 and a(p) > gm(p) for vm ≤ p ≤ s and all m.

Remark 3 From now on k is a field.Then C is compressed iff

(*) dim Cp = a(p) for p < v0 and dim Cp = gs̄(p) for p ≥ v0, or
(we can in (*) replace p ≥ v0 by p ≥ b1).

As there are surjections A η−→ C and N :=
⊕

q∈Z A(q)⊕t(q) ϵ−→ C∗

and as dim N−p = gs̄(p) and dim Ap = a(p), (*) is equiv. to:
(**) ϵ (resp. η) is an isomorph. in deg. −p ≤ −b1 (resp. p < v0).
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Generalizing Cho-Tony’s examples (C-TEx) in J.Alg 2001
They study level artinian quotients C of A = R/((xy , xz) + L),
R = k[x , y , z ] a poly. ring and L an ideal of k[y , z ] such that
Proj(A) ⊂ P2 is a punctual scheme. They show that there’s no
level (i.e. s̄ = s) C with Hilbert function hI

s = (1, 3, 4, 5, 6, 2) of
socle deg. 5; and in fact no level C with

hI
s = (1, 3, 4, 5, 6, ...6, 6, 2)

for any soc. deg. ≥ 5, but there are artinian C with

hC = (1, 3, 4, 5, 6, ...6, 5, 2)

(e.g. take A = R/(xy , xz , z5)) where hC is the maximal one

Note the ring A is of the form (A1 ⊗k A2)/m1m2 where

A1 = k[x ], A2 = k[y , z ]/(z5) with m1 = (x), m2 = (y , z)

(their Ex. cover also: Proj(A2) consists of 5 smooth points on the
line Proj(k[y , z ]); they give several other examples too)
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Example 2 [ChoTony]
Let A = k[x , y , z ]/(xy , xz , z5), and C∗ = A(f1, f2) with

f1 = x−s + y−s+2z−2 , f2 = y−s+4z−4 for s ≥ 5.

Then A1.(f1, f2) is 5-dimensional and x .f2 = 0 is a lin. relation!
Indeed

xf1 = x−s+1 , xf2 = 0

yf1 = y−s+3z−2 , yf2 = y−s+5z−4

zf1 = y−s+2z−1 , f2 = y−s+4z−3

So hC = (1, 2, 3, ...., 5, 2) and;

→ A(s − 1) [0,x ]tr−−−→ A(s)2 ↠ C∗ is exact in deg . ≤ −s + 1
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Set-up for “Product ring” A = (A1 ⊗k A2)/m1m2,with A1 = P/I
A2 = Q/J where I ⊂ P, J ⊂ Q are graded ideals in two poly. rings
P = k[x1, ..., xn], Q = k[y1, .., ym] with irrel. maximal ideals mi . So

A = k[x1, .., xn, y1, .., ym]/(m1m2 + RI + RJ) with R = P ⊗k Q

Note Ap = A1
p ⊕ A2

p, p > 0 and A1
0 = A2

0 = k with k a field.

Let C0 be a graded (and C a poss. non-graded) quotient of A, and
suppose there’s a set of homogen. generators {f1 + g1, ..., fτ + gτ }
of C∗

0 of degree e1 ≤ e2 ≤ ..., eτ < 0 (so ei = deg fi = deg gi)
with e1 = −s, and a function t such that

N :=
⊕

q∈Z A(q)⊕t(q) =
⊕τ

i=1 A(−ei) ↠ C∗
0 .

Let C∗
1 := A1(f1, ..., fτ ) and C∗

2 := A2(g1, ..., gτ ). Then C1 and C2
are quotients of A1 and A2, say of socle types t1 and t2 necessarily
satisfying t1 ≤ t and t2 ≤ t. Suppose t2 = t, and that {g1, ..., gτ }
is a min. set of homogen. generators of C∗

2 . Moreover suppose
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the socle types t1 and t2 are permissible for A1 and A2, and that
C1 and C2 are compressed for their socle types t1 and t2.

Then it’s easy to see that t is the socle type of C0.
Proposition (Prop2: Maximality of hC0)

With C∗
i as above, the Hilbert function hC0 is given by

hC0(p) = hC1(p)+hC2(p)−t1(p) for p > 0 where hCi = hI
s̄i ,Ai (3)

Moreover any quotient C ′
0 of A of socle type t satisfy;

hC ′
0
(p) ≤ hC0(p) for all p (4)

provided either t1 = t or hC1(p) = a1(p) := dim A1(p), for p < s.

Proof To prove (3), we compare C∗
0 with C∗

1 + C∗
2 . For q = 1, 2

let aq
i ∈ Aq

i be arbitrary and recall A0 = Aq
0 = k. Then

C∗
1 + C∗

2 = A1(f1, .., fτ ) + A2(g1, .., gτ ) = A(f1, .., fτ , g1, .., gτ ) (5)
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as a2
i fj = 0 = a1

i gj for i > 0, e.g. yi fj = 0 = xigj For the same
reason

Ai(fj , gj) = Ai(fj + gj), for i > 0 and any j (6)

as (a1
i + a2

i )fj = a1
i fj = a1

i (fj + gj) and ditto for a2
i gj .

Thus, as C∗
0 = A(f1 + g1, .., fτ + gτ ), the leftmost vertical arrow in

0 −→ (A1C∗
0 )q −→ (C∗

0 )q −→ (C∗
0 /(A1C∗

0 ))q −→ 0
↓ ◦ ↓ ◦ ↓

0 → (A1(C∗
1 + C∗

2 ))q → (C∗
1 + C∗

2 )q → ((C∗
1 + C∗

2 )/(A1(C∗
1 + C∗

2 )))q → 0

is an equality. Moreover the middle vertical arrow yields obviously
an injective map into (C∗

1 + C∗
2 )q where the ” + ” is a direct sum

for q < 0 as (A†)q = (A1)†
q ⊕ (A2)†

q. As the rightmost downarrow
yields a map between the dual of the socles of C0 and C1 + C2 by
Lemma 1, we get, with p = −q > 0:

hC1(p) + hC2(p) − hC0(p) = t1(p) + t(p) − t(p)

which yields (3), as desired.
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To prove (4), take any C ′∗
0 = A(f ′

1 + g ′
1, .., f ′

τ + g ′
τ ) of socle type t

and define C ′∗
1 = A(f ′

1 , .., f ′
τ ) and C ′∗

2 = A(g ′
1, .., g ′

τ ), their socle
types are t ′

1 and t ′, say, for which we at least know t ′
1 ≤ t and

t ′ ≤ t. As we no place above used that the Hilbert functions of C1
and C2 are maximal, the arguments above yield

hC ′
0
(p) = hC ′

1
(p) + hC ′

2
(p) − t ′

1(p) for p > 0 (7)

First note that (4) holds for p = s (resp. p = 0) as their Hilbert
functions for p = s coincide with their socle types for p = s (resp.
as t1 is permissible). So let’s us suppose 0 < p < s below.

Let HC ′
1
(p) := hC ′

1
(p) − t ′

1(p), HC1(p) := hC1(p) − t1(p) and
assume t1(p) = 0. Then by (3) and (7), we get;

hC ′
0
(p) = HC ′

1
(p) + hC ′

2
(p) ≤ HC1(p) + hC2(p) = hC0(p) , (8)

and hence we get (4), provided we can show

hC ′
2
(p) ≤ hC2(p) and HC ′

1
(p) ≤ HC1(p) (9)
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To see hC ′
2
(p) ≤ hC2(p), recall t ′ ≤ t where t is the socle type of

the A2-quotient C2. Using (1) and (2) for m = p, first with a2, t1
for a, t and next with a2, t for a, t, we get the first part of (9).

To see
HC ′

1
(p) ≤ HC1(p) := hC1(p) − t1(p) (10)

for the A1-quotient C ′
1 when t1 = t we argue exactly as above with

a1 for a2, and we get hC ′
1
(p) ≤ hC1(p). Thus (10) holds when

t1(p) = 0 as HC ′
1
(p) ≤ hC ′

1
(p).

Suppose t1(p) ̸= 0. Then a1(p) ≥ g1
s̄1(p) as t1 is permissible. So

by (2), (1), hC1(p) = g1
s̄1(p) :=

∑s
q=p t(q) a1(q − p). As t ′

1 ≤ t,

HC1(p) :=
s∑

q=p+1
t(q) a1(q−p) ≥

s∑
q=p

t ′
1(q) a1(q−p)−t ′

1(p) ≥ HC ′
1
(p)

where the last inequality follows from (1), (2) and the maximality
of hI

m. Also if hC1(p) = a1(p) for p < s, we may have t1(p) ̸= 0 in
which case a1(p) = g1

s̄1(p), and the proof above applies to get (9).
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Finally if hC1(p) = a1(p) for any fixed p < s, we have either
t1(p) = 0 or g1

s̄1(p) = a1(p) as t1 is permissible. In the first case
just insert a1(p) for HC1(p) in (8) and note that HC ′

1
(p) ≤ a1(p)

as C ′
1 is a quotient of A1 (also hC ′

2
(p) ≤ hC2(p) holds by the proof

after (4). As the second case was already treated in the last
paragraph above, then (4) is proved.

Corollary 1 With C∗
2 ,C∗

1 and C∗
0 as in Prop.2, suppose t1 = t and

moreover that aq(i) := dim Aq
i satisfy

a1(i) = a2(i) for all p ≤ s .

Then C0 ∈ HΨhI
s̄

A .

Proof Note s̄i = s̄ for i = 1, 2 as Ai and A have the same t. Also
a(i) = 2a1(i) for 0 < p ≤ s. Assume t(p) = 0. Then just multiply

g1
s̄ (p) :=

∑s
q=s̄ t(q) a1(q − p), hI

A1
(p) := min{ g1

s̄ (p), a1(p) }
by 2 to get hI

A = 2hI
A1 , whence by Prop., hC0 = 2hC1 = hI

s̄,A. If
t(p) ̸= 0, then a1(p) ≥ g1

s̄ (p) and gs̄(p) = 2g1
s̄ (p) − t(p) Use Prop
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Now to the case A1 := k[x ] and A2 = k[y1, .., ym]/J
with C1 = k[x ]/(x s+1) and C2 a quotient of A2 as above, so of
socle type t and with {g1, g2, ..., gτ } as a min. set of generators of
C∗

2 . Let [g ] be the matrix [g1, g2, ..., gτ ].

Then there’s a minimal set of generators of C∗
0 of the form

{f1 + g1, f2 + g2, ..., fτ + gτ }, with 1xτ -matrix [f + g ]. As

1, x−1, .., x−s+1 ∈ C∗
0 , (recall x(fi + gi) = xfi)

we may take f1 = x−s and fi = 0 for i > 1. Also in the non-graded
case we may take a minimal set of generators of C∗ to be
{x−s + G1,G2, ...,Gτ } with 1xτ -matrix [F + G]. But xgi = 0 and
xGi = 0. Thus both in the graded and filtered case there are τ − 1
relations:

xgi = 0 and xGi = 0 for 2 ≤ i ≤ τ (11)
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Thus there are matrices M(f + g) and M(F + G), both equal to:
0 0 .. 0
x 0 .. 0
0 x .. 0
. . .. .
0 0 .. x


such that [f + g ]M(f + g) = 0 and [F + G]M(F + G) = 0. So
there’s a homogeneous complex

M :=
τ⊕

i=2
A(−ei − 1) M(f +g)−−−−−→

τ⊕
i=1

A(−ei)
[f +g ]−−−→ C∗

0 → 0 (12)

But Ap = k[x ]p ⊕ A2
p for p > 0 and mult. between elements of A2

p
and entries of M(f + g) become 0. Thus (12) induces a complex:
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0 →
τ⊕

i=2
k[x ](−ei − 1) M(f +g)−−−−−→

τ⊕
i=1

A(−ei)
[f +g ]−−−→ C∗

0 → 0 (13)

Here the map given by M(f + g) is injective (easy) as the last
τ − 1 rows in M(f + g) are zero except at one coordinate.

Proposition (Prop3: Useful presentation matrix of C0)

(13) is exact in degree ≤ −b1(A2). Thus, for b1(A2) ≤ p < s,

dim(C0)p = gs̄(p) − e(p) with e(p) := (
∑s

q=p+1 t(q)) − 1.
Also (∗) : dim(C0)p = a(p) for p < v0(A2) (and for p < b1(A2)).

Proof To show (13) is exact in degree d ≤ −b1(A2) it suffices
to see

dim(C∗
0 )d +

τ∑
i=2

dim k[x ](−ei − 1)d =
τ∑

i=1
a(−ei)d (14)

Put p = −d . As dim k[x ]q = 1 for q ≥ 0, the 1. sum equals
(
∑s

q=p+1 t(q)) − 1 = e(p); the last sum = gs̄(p) =
∑s

q=p t(q)a(q − p).
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Now recall Prop.2 which implies

dim(C∗
0 )−p = hI

s̄(p) + 1 for 0 < p < s, where hI
s̄(p) = hI

s̄,A2(p),

As the A2-quotient C2 is compressed, Remark 3 yields;
dim(C2)p = a2(p) for p < v0(A2) and

dim(C2)p = g2
s̄ (p) :=

∑s
q=p t(q)a2(q − p) for p ≥ b1(A2).

Also dim(C2)p = hI
s̄(p) as C2 is compressed. Combining, we get:

dim(C∗
0 )−p = a2(p) + 1 = a(p) for 0 < p < v0(A2), so (*) holds,

and dim(C∗
0 )−p = g2

s̄ (p) + 1 for s > p ≥ b1(A2).

But a(q) − a2(q) = 1 for q > 0 (and 0 for q = 0) which implies
gs̄(p) − (g2

s̄ (p) + 1) =
∑s

q=p+1 t(q) − 1 = e(p). Thus
dim(C∗

0 )−p = gs̄(p) − e(p) for p ∈ [b1(A2), s⟩, so (13) is exact for
−p ≤ −b1(A2) as (13) exact for −p = −s is trivial.
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Recall (Remark 3) that if C is graded and compressed, then

⊕
q∈Z A(q)⊕t(q)

p
∼=−→ C∗

p for p ≤ −b1 and Aq
∼=−→ Cq for q < b1

And with C filtered, so possibly non-graded, the above, slightly
reformulated, holds; e.g. let N :=

⊕
q∈Z A(q)⊕t(q). Then

N/F 1−b1N
∼=−→ C∗/F 1−b1C∗ and F 1−b1C∗ = F 1−b1A†

if C is compressed. But a compressed filtered C has several other
nice properties, e.g. in Tony’s set-up, see [Iar84, Cor.3.8]:

C is compressed iff G•(C) is compressed. Moreover if C is
compressed, then G•(C) = C0 where C0 is generated by the initial
forms of a minimal set of generators of C . Also the socle types of
C and C0 coincide.
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There’s a general lemma in [KK25], see (11.2), which was designed
for proving G•C∗ = C∗

0 and for comparing the socle types of C and
C0. Let’s apply it directly in our situation. First composing the left
module in (13) by A ↠ k[x ] as in the complex below, the exactness
proved in Prop.3 yields (12) exact. As [F + G]M(F + G) = 0,

M :=
τ⊕

i=2
A(−ei − 1) M(F+G)−−−−−→

τ⊕
i=1

A(−ei)
[F+G]−−−−→ C∗ ↪→ A† =: P

is a complex which extends (12). Now:

Lemma (Lem2: G•C and socle type)

Let M µ−→ N ν−→ P be a sequence of graded A-mod. Let D := Im ν

and assume there’s n with Mp
G•(µ)−−−→ Np

G•(ν)−−−→ Pp exact for all
p < n and with νµM ⊂ F n+1P. Then GpD = Im Gpν for all p ≤ n.
Moreover if (M/F p+1M) ⊗A k → (N/F p+1N) ⊗A k vanishes for
some p < n then

((G•D) ⊗A k)p
∼=−→ Gp(D ⊗A k) .
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Proposition (Prop4: G•C and socle type for product rings)
With C∗ and C∗

0 as above, then
(i) G•(C∗) = C∗

0 , and
(ii) t is the socle type of both C0 and C.

Proof There’s above a complex: M M(F+G)−−−−−→ N [F+G]−−−−→ P that
extends the the graded complex Mp

M(f +g)−−−−−→ Np
[f +g ]−−−→ Pp which

by Proposition 3 is exact for p ≤ −b1(A2). Thus by Lemma 2

GpC∗ = (C∗
0 )p for all p ≤ 1 − b1(A2).

Moreover dim(C∗
0 )d = a(−d) for d > −b1(A2) by Prop.3. Hence

(C∗
0 )d = Gd(C∗) as A†

d = (C∗
0 )d ⊂ Gd(C∗) ⊂ A†

d .

It follows that G•(C∗) = C∗
0 , as desired
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By Lemma 2;
((G•C∗) ⊗A k)p

∼=−→ Gp(C∗ ⊗A k) for p ≤ −b1(A2)
as the entries of M(F + G) belong to F 1A. Thus for p ≤ −b1(A2);

(*) (C∗
0 ⊗A k)p

∼=−→ Gp(C∗ ⊗A k) .
But if p > −b1(A2) then (N ⊗ k)p = 0 as −b1(A2) ≥ −s̄ and
N := ⊕q∈ZA(q)⊕t(q). Moreover N ↠ C∗

0 = G•(C∗) is surjective,
and so is

(G•C∗) ⊗A k ↠ G•(C∗ ⊗A k)

by [KK25,(4.6)]. Thus both groups in (*) vanish. So (*) holds for
all p which shows that the socle types of C of C0 coincide.
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Proposition (Prop5: tangent spaces)

Let C∗
0 be as above and let I = ker(A → C0). Then the tangent

spaces, F 0 HomA(I,C0) and F 0 HomA(C∗
0 ,A†/C∗

0 ), of FΨh
A and

F∆h∗

A† at C0 and C∗
0 coincide and have dimension∑

p t(p)r(p) where r(p) =
∑

q≤p(a(q) − hC0(q)) .

Also the tangent spaces, HomA(I,C0)0 and HomA(C∗
0 ,A†/C∗

0 )0, of
HΨh

A and H∆h∗

A† coincide. They have dimension∑
p t(p)(a(p) − hC0(p)) .

Remark 4 Let C∗, C∗
0 and I be as above and let If = ker(A → C).

Then the tangent spaces of FΨh
A and F∆h∗

A† given (with C for C0)
in the Prop.5 always coincide as their schemes are isomorphic by
Thm.2. Similarly in the graded case. Note that these tangent (and
obstruction) spaces are much studied by Jelisiejew, e.g. in Thm
4.2 in [Jel19]: J. Lond. Math. Soc.(2) 100 (2019). See also
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[PGor98,Thm 1.10] and [KK25, (10.15)]

Proof To compute HomA(C∗
0 ,A†/C∗

0 )p for p ≥ 0, let Q := A†/C∗
0 .

Recall C∗
0 = A(x e1 + g1, g2, ..., gτ ), so x .(x−s + g1) ∈ C∗

0 . Thus
the map
(*) Qr

.x−→ Qr+1 vanishes for r ≥ −s.
Note

⊕τ
i=2A(−ei − 1)q

M(f +g)−−−−−→ ⊕τ
i=1A(−ei)q

[f +g ]−−−→ (C∗
0 )q → 0

is exact in degree q ≤ −b1(A2); so replacing its leftmost term and
arrow by ⊕τ+n

i=2 A(−pi) and µ0 where pi = ei + 1 for 2 ≤ i ≤ τ and
pi > −b1(A2) for i > τ (note there’s no relation in deg ≤ −b1(A2)
other than those generated by (11) as C∗

2 has no relation in degree
≤ −b1(A2)) we get, with ν := Hom(µ0,Q), the diagram

HomA(C∗
0 , Q)p ↪→ HomA(⊕τ

i=1A(−ei ), Q)p
ν−→ HomA(⊕τ+n

i=2 A(−pi ), Q)p

↓∼= ◦ ↓∼=

⊕τ
i=1 Q(ei )p

ν−→ ⊕τ+n
i=2 Q(pi )p

We claim ν = 0
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Claim: ν = 0. Indeed to show νϕ = 0 for any ϕ ∈ ⊕τ
i=1Q(ei)p,

replace ν and ϕ by matrices [ν] and [q1, .., qτ ]tr . Note [ν] is a
(τ + n)xτ matrix whose first (τ − 1) rows are of the form
[0, ..0, x , 0, ..0] as they are given by the columns of M(f + g). Thus
in the product [ν][q1, .., qτ ]tr they become 0 by (*) as ei + p ≥ −s.
For the other rows, the entries of the above product are of degree

pi + p > −b1(A2) + p ≥ −b1(A2) for p ≥ 0 .

But Qr = 0 for r > −b1(A2) as dim(C∗
0 )d = a(−d) by Prop.3.

Thus ν = 0, which implies
HomA(C∗

0 ,Q)p ∼= ⊕τ
i=1Q(ei)p.

Then Prop.5 follows by counting dimensions of the free module

⊕τ
i=1Q(ei)p ∼= ⊕q∈ZQ(−q)⊕t(q)

p , using dim Q−v = a(v) − hC0(v).
So dim ⊕τ

i=1Q(ei)p =
∑

q t(q)(a(q − p) − hC0(q − p)). Then
take p = 0 (resp.

∑
p≥0) in the graded (resp. filtered) case.
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The results above, in particular Proposition 2, fit with the theory
developed in [KK25, (7.6)-(7.10)]. Indeed applying Prop. 2(4) to
C0 as well as to all (∆mC∗

0 )∗ (with Hilbert function hm), assuming
there Ci I-compressed for i = 1, 2, we get that {hm} is recursively
maximal and t quasipermissible in the sense of [KK25,(7.6)-(7.7)].
Thus C0 ∈ HΛ{hm}

A is a closed point of HΛ{hm}
A below where

S := Spec(k) with k a noetherian ring.
The theorem is inspired by [Iar84, Prop. 3.6].

Theorem (Thm3, the scheme of recursively maximal quotients)

If t is quasi-permissible and S is reduced and irreducible, then
there exists a recursively maximal set {hm} for t and T/S;
moreover, for any such set {hm}, then HΛ{hm}

A is nonempty,
reduced, and irreducible, and it’s covered by open subschemes,
with each one isomorphic to an open subscheme of the affine space
over S of fiber dimension H where H :=

∑
p t(p)

(
a(p) − hs̄(p)

)
.
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But Prop. 5 (and Prop. 4) indicates that FΛ{hm}
A may be similarly

nice. i.e. that the folowing can be true

Conjecture Set

F :=
∑

p t(p)r(p) where r(p) :=
∑

q≤p(a(q) − hs̄(q)) ,

and assume that t is permissible. Then for any recursively maximal
set {hm} for t and T/S, FΛ{hm}

A is covered by open subschemes,
each one isomorphic to an open subscheme of the affine space over
S of fiber dim. F . Also FΛ{hm}

A is irreducible if S is irreducible.

See [KK25,(10.12)] for hm = hI
m where we also needed to put

some mild assumptions on A too.

Thanks for listening
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